Skip to main content

Advertisement

Log in

Solid/Liquid Interfacial Energy of Mg-Al Alloys

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The variation of solid–liquid interfacial energy (σ) for Mg–Al binary alloys was investigated as a function of Al content (3, 6, and 9 wt pct) based on the microstructure analysis of directional solidified Mg alloys. Primary dendrite arm spacing was measured from the directionally solidified alloys and used in Kurz and Fisher’s and Trivedi’s relations to calculate the value of σ. The calculated results reveal that the increasing Al content in Mg can significantly decrease the interfacial energy, which indicates a possible high adsorption tendency of Al at the solid/liquid interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. J. Stowell: Philos. Mag., 1970, vol.22, pp. 1-6.

    Article  Google Scholar 

  2. S. W. Cahn, W. B. Hillig and G. W. Sears: Acta Metall., 1964, vol. 12, pp. 1421-1441.

    Article  CAS  Google Scholar 

  3. G. F. Bolling and W.A. Tiller: J.Appl. Phys., 1960, vol. 31, pp. 1345-1350.

    Article  CAS  Google Scholar 

  4. D. Turnbull: J. Chem. Phys., 1950, vol. 18, pp. 198-203.

    Article  CAS  Google Scholar 

  5. D. R. H. Jones: J. Mater. Sci., 1974, vol. 9, pp.1-17.

    Article  CAS  Google Scholar 

  6. D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J. Hoyt, A. Karma, and D.J. Srolovitz: Phys. Rev. B, 2006, vol. 73, pp. 024116-1-12.

  7. Micress, software developed at Access e.V., RWTH Aachen. www.micress.de.

  8. J. Andersson: CALPHAD., 2002, vol. 26, pp. 273-312.

    Article  CAS  Google Scholar 

  9. W. Kurz and D.J. Fisher: Acta Metall., 1981, vol. 11, pp.11-20.

    Google Scholar 

  10. R. Trivedi: Metall. Trans., 1984, vol. 15A, pp. 977–982.

    CAS  Google Scholar 

  11. M. Gunduz and J. D. Hunt: Acta Metall., 1985, vol. 33, pp. 1651-1672.

    Article  CAS  Google Scholar 

  12. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B Kang J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen: CALPHAD., 2009, vol. 31, pp. 295–311.

  13. W. Sutherland: Phil. Mag., 1905, vol. 9, pp.781-785.

    CAS  Google Scholar 

  14. A.K. Roy and R. P. Chhabra: Metall. Trans. A., 1988, vol. 19A, pp. 273-279.

    CAS  Google Scholar 

  15. P. Protopapas, H. C. Andersen, and N. A. D. Parlee: J. Chem. Phys., 1973, vol. 59, pp. 15-25.

    Article  CAS  Google Scholar 

  16. M. F. Culpin: Proc. Phys. Soc., 1957, vol. 70B, pp. 1079-1086.

    Google Scholar 

  17. C. Zhang, D. Ma, K.-S.Wu, H.-B. Cao, G.-P. Cao, S. Kou, Y. A. Chang and X.-Y. Yan: Intermetallics., 2007, vol. 15, pp. 1395-1400.

    Article  CAS  Google Scholar 

  18. I. A. Katze and D. Kuhlmann-Wilsdorf: Appl. Phys. Lett., 1966, vol. 9, pp. 96-98.

    Article  Google Scholar 

  19. A. S. Skapski: Acta Metall., 1956, vol. 4, pp. 576-582.

    Article  CAS  Google Scholar 

  20. R. E. Ewing: J Cry. Growth., 1971, vol. 11, pp. 221-224.

    Article  CAS  Google Scholar 

  21. N. Eustathopoulos, L. Coudurier, J. C. Loud and P. Desre: J. Cry. Growth., 1976, vol. 33, pp.105-110.

    Article  CAS  Google Scholar 

  22. J. W. Taylor: Acta Metall., 1956, vol. 4, pp. 460-468.

    Article  CAS  Google Scholar 

  23. J. A. V. Butler: Proc. R. Soc., 1935, vol. 135A, pp. 348-375.

    Google Scholar 

  24. Md. J. Rahman: Master thesis, McMaster University, 2009, Hamilton, Canada.

  25. L.A. Girifalco and R.J. Good: J. Phys. Chem., 1957, vol. 61, pp. 904-909.

    Article  CAS  Google Scholar 

  26. W. A. Miller and G. A. Chadwick: Proc. R. Soc. London., 1969, vol. 312A, pp. 257-276.

    Google Scholar 

  27. K. Petterson, O. Lohne and N. Ryum: Metall. Trans., 1990, vol. 21A, pp. 221-230.

    Google Scholar 

  28. D. Montiel, L. Liu, L. Xiao, Y. Zhou, N. Provatas: Acta Mater., 2012, Vol. 60, 2012, pp. 5925–32.

    Article  CAS  Google Scholar 

Download references

This research was supported by funding from the NSERC Magnesium Strategic Research Network and Strategic Network Enhancement Initiative program. In addition, the authors wish to thank Prof. Youn-Bae Kang for usage of the solidification experimental equipment in GIFT, Postech, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ho Jung.

Additional information

Manuscript submitted July 27, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paliwal, M., Jung, IH. Solid/Liquid Interfacial Energy of Mg-Al Alloys. Metall Mater Trans A 44, 1636–1640 (2013). https://doi.org/10.1007/s11661-013-1623-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1623-0

Keywords

Navigation