Skip to main content
Log in

Molecular Dynamics Investigation of Nanometric Cutting of Single-Crystal Silicon Using a Blunt Tool

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A cutting process is strongly affected by depth of cut (h0) and tool edge radius (re), the relationship of which is described by relative tool sharpness (RTS = h0/re). In nanometric cutting, the depth of cut is far smaller than the tool edge radius, thus the tool is actually a very blunt one with a highly negative effective tool rake angle (~ − 90°). However, most previous studies have assumed the tool is extremely sharp with a nanometric edge radius, and to date there is very little literature on the cutting mechanism for a blunt tool (RTS < 1). In this study, the material deformation/removal behavior and forces under a small RTS from 1 to 0 were investigated via molecular dynamics. The results show that the surface integrity and chip formation are strongly affected by RTS. As RTS is reduced to 0.25 or smaller, rubbing and ploughing occur with no material removal. In such a circumstance, the force angle drops sharply with remarkable subsurface damage formation in the workpiece. These findings are distinctly different from the common belief, and provide new information for the optimization of the silicon wafer manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Heidari and J. Yan, Int. J. Adv. Manuf. Technol. 95, 479 (2018).

    Article  Google Scholar 

  2. M. Mukaida and J. Yan, Int. J. Mach. Tools Manuf 115, 2 (2017).

    Article  Google Scholar 

  3. V. Astakhop and J. C. Outeiro, in Proceedings8th CIRP International Workshop on Modeling of Machining Operations (2005), p. 517.

  4. X. Liu, R.E. DeVor, S.G. Kapoor, and K.F. Ehmann, J. Manuf. Sci. Eng. 126, 666 (2004).

    Article  Google Scholar 

  5. F.Z. Fang and G.X. Zhang, Int. J. Adv. Manuf. Technol. 22, 703 (2003).

    Article  Google Scholar 

  6. B.P. O’Connor, E.R. Marsh, and J.A. Couey, Precis. Eng. 29, 124 (2005).

    Article  Google Scholar 

  7. M. Arif, Z. Xinquan, M. Rahman, and S. Kumar, Int. J. Mach. Tools Manuf 64, 114 (2013).

    Article  Google Scholar 

  8. Z.J. Yuan, M. Zhou, and S. Dong, J. Mater. Process. Technol. 62, 327 (1996).

    Article  Google Scholar 

  9. L. Zhanqiang, S. Zhenyu, and W. Yi, Int. J. Adv. Manuf. Technol. 69, 1219 (2013).

    Article  Google Scholar 

  10. X. Wu, L. Li, M. Zhao, and N. He, Int. J. Adv. Manuf. Technol. 82, 1941 (2016).

    Article  Google Scholar 

  11. M.A. Rahman, M.R. Amrun, M. Rahman, and A.S. Kumar, Int. J. Mach. Tools Manuf 115, 15 (2017).

    Article  Google Scholar 

  12. M. Azizur Rahman, M. Rahman, and A. Senthil Kumar, Int. J. Adv. Manuf. Technol. 96, 3545 (2018).

    Article  Google Scholar 

  13. J. Yan, T. Asami, H. Harada, and T. Kuriyagawa, CIRP Ann. Manuf. Technol. 61, 131 (2012).

    Article  Google Scholar 

  14. J. Yan, H. Zhao, and T. Kuriyagawa, Semicond. Sci. Technol. 24, 75018 (2009).

    Article  Google Scholar 

  15. D.C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd ed. (Cambridge: Cambridge University Press, 2004).

    Book  Google Scholar 

  16. R. Komanduri, N. Chandrasekaran, and L.M. Raff, Philos. Mag. Part B 79, 955 (1999).

    Article  Google Scholar 

  17. M.B. Cai, X.P. Li, and M. Rahman, Int. J. Mach. Tools Manuf 47, 75 (2007).

    Article  Google Scholar 

  18. A. O. Oluwajobi and X. Chen, in Proceedings of Computing and Engineering Annual Researchers’ Conference, 1997 (2010), p. 160.

  19. F.Z. Fang, H. Wu, W. Zhou, and X.T. Hu, J. Mater. Process. Technol. 184, 407 (2007).

    Article  Google Scholar 

  20. M. Lai, X.D. Zhang, and F.Z. Fang, Appl. Phys. A Mater. Sci. Process. 108, 809 (2012).

    Article  Google Scholar 

  21. S. Goel, N. Haque Faisal, X. Luo, J. Yan, and A. Agrawal, J. Phys. D Appl. Phys. 47, 275304 (2014).

    Article  Google Scholar 

  22. V.A. Balogun, I.F. Edem, A.A. Adekunle, and P.T. Mativenga, J. Clean. Prod. 116, 187 (2016).

    Article  Google Scholar 

  23. J. Ren, Z. Dong, J. Zhao, and P. Liu, Appl. Surf. Sci. 369, 584 (2016).

    Article  Google Scholar 

  24. J. Guénolé, A. Prakash, and E. Bitzek, Appl. Surf. Sci. 416, 86 (2017).

    Article  Google Scholar 

  25. S. Zare Chavoshi, S. Goel, and X. Luo, J. Manuf. Process. 23, 201 (2016).

    Article  Google Scholar 

  26. H. Zhao, C. Shi, P. Zhang, L. Zhang, H. Huang, and J. Yan, Appl. Surf. Sci. 259, 66 (2012).

    Article  Google Scholar 

  27. J. Li, Q. Fang, L. Zhang, and Y. Liu, Appl. Surf. Sci. 324, 464 (2015).

    Article  Google Scholar 

  28. Y. Liu, B. Li, and L. Kong, Comput. Mater. Sci. 148, 76 (2018).

    Article  Google Scholar 

  29. J. Tersoff, Phys. Rev. B 38, 9902 (1988).

    Article  Google Scholar 

  30. J. Tersoff, Phys. Rev. B 37, 6991 (1988).

    Article  Google Scholar 

  31. S.V. Hosseini and M. Vahdati, Comput. Mater. Sci. 65, 29 (2012).

    Article  Google Scholar 

  32. H. Dai, G. Chen, C. Zhou, Q. Fang, and X. Fei, Appl. Surf. Sci. 393, 405 (2017).

    Article  Google Scholar 

  33. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  34. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 085001 (2010).

    Article  Google Scholar 

  35. J. Yan, T. Asami, H. Harada, and T. Kuriyagawa, Precis. Eng. 33, 378 (2009).

    Article  Google Scholar 

  36. J. Shimizu, H. Eda, L. Zhou, and H. Okabe, Tribol. Online 3, 248 (2008).

    Article  Google Scholar 

  37. G. Xiao, S. To, and G. Zhang, Comput. Mater. Sci. 98, 178 (2015).

    Article  Google Scholar 

  38. S. Venkatachalam, O. Fergani, X. Li, J. Guo Yang, K.-N. Chiang, and S.Y. Liang, J. Manuf. Sci. Eng. 137, 021020 (2015).

    Article  Google Scholar 

  39. G. Bissacco, H.N. Hansen, and J. Slunsky, CIRP Ann. Manuf. Technol. 57, 113 (2008).

    Article  Google Scholar 

  40. J. Yan, M. Yoshino, T. Kuriagawa, T. Shirakashi, K. Syoji, and R. Komanduri, Mater. Sci. Eng., A 297, 230 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science, Research and Technology (MSRT) of IR Iran for international education program scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Nader Ameli Kalkhoran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1858 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameli Kalkhoran, S.N., Vahdati, M. & Yan, J. Molecular Dynamics Investigation of Nanometric Cutting of Single-Crystal Silicon Using a Blunt Tool. JOM 71, 4296–4304 (2019). https://doi.org/10.1007/s11837-019-03671-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03671-w

Navigation