Skip to main content
Log in

A Perspective on Thermochemical and Electrochemical Processes for Titanium Metal Production

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Titanium metal is produced commercially by the costly and energy-intensive Kroll process, which is highly matured and optimized. In the last several decades, many new methods have been proposed to reduce the production cost of Ti metal and thus widen its applications. These new methods can be categorized into two main groups: thermochemical and electrochemical methods. Even though detailed operations for different processes vary, the various processes in each category share the same principles. This article outlines the differences and the challenges between different processes on the basis of these shared principles, with an emphasis on the developmental processes. Although several of these new processes are at the laboratory or pilot-plant development stage, it is recognized that systematic fundamental research and open scientific exchanges are still sorely needed in this area to improve the new technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D. Fray, Int. Mater. Rev. 53, 317 (2008).

    Article  Google Scholar 

  2. C.G. McCracken, C. Motchenbacher, and D.P. Barbis, Int. J. Powder Metall. 46, 19 (2010).

    Google Scholar 

  3. F. Froes and D. Eylon, Int. Mater. Rev. 35, 162 (1990).

    Article  Google Scholar 

  4. E. Kraft, Summary of Emerging Titanium Cost Reduction Technologies (Vancouver: EHK Technologies for ORNL, 2004).

    Google Scholar 

  5. T.B. Reed, Free Energy of Formation of Binary Compounds: An Atlas of Charts for High-Temperature Chemical Calculations (Cambridge: The MIT Press, 1972).

    Google Scholar 

  6. J.P. Coughlin, Contributions to the Data on Theoretical Metallurgy. XII. Heats and Free Energies of Formation of Inorganic Oxides (US Bureau of Mines Bull., 542, 1954).

  7. A.D. Mah, K.K. Kelley, N.L. Gellert, E.G. King and C. O’Brien: Thermodynamic properties of titanium-oxygen solutions and compounds (Bureau of Mines, 1955).

  8. W. Kroll, Trans. Electrochem. Soc. 78, 35 (1940).

    Article  Google Scholar 

  9. M.A. Hunter, J. Am. Chem. Soc. 32, 330 (1910).

    Article  Google Scholar 

  10. W. Mo, Titanium Metallurgy (in Chinese) (Beijing: Metallurgical Industry Press, 1998).

    Google Scholar 

  11. S. Seetharaman: Treatise on Process Metallurgy, Volume 3: Industrial Processes. (Newnes: Elsevier, 2013).

    Google Scholar 

  12. S.A. Kasparov, A.G. Klevtsov, A.I. Cheprasov, V.S. Moxson and V.A. Duz, U.S. Patent 8007562 B2, 2011.

  13. C. Doblin, A. Chryss, and A. Monch, Key Eng. Mater. 520, 95 (2012).

    Article  Google Scholar 

  14. D.A. Hansen and S.J. Gerdemann, JOM 50, 56 (1998).

    Article  Google Scholar 

  15. D.S. van Vuuren, S.J. Oosthuizen, and M.D. Heydenrych, J. South Afr. Inst. Min. Metall. 111, 141 (2011).

    Google Scholar 

  16. G. Crowley, Adv. Mater. Process. 161, 25 (2003).

    Google Scholar 

  17. C. Wei, Y. Yamamoto, and W.H. Peter, Key Eng. Mater. 436, 123 (2010).

    Article  Google Scholar 

  18. S.J. Gerdemann, L.L. Oden and J.C. White, in Proc. 1997 Materials Week ‘Titanium Extraction and Processing’, ed. by B. Mishra, G.J. Kipouros (TMS, Indianapolis, IN, 1997), pp. 49–54.

  19. B.A. Borok, Trans. Cent. Res. Inst. Ferrous Metall. 43, 69 (1965).

    Google Scholar 

  20. F.H. Froes, JOM 50 (9), 41 (1998).

    Article  Google Scholar 

  21. T.H. Okabe, T. Oda, and Y. Mitsuda, J. Alloys Compd. 364, 156 (2004).

    Article  Google Scholar 

  22. T.H. Okabe, T. Kakihira and T. Abiko, in Proc. TMS 2004 Symp on ‘Electrochemical Measurements and Processing of Materials’, (TMS, Charlotte, NC, 2004), pp. 67–74.

  23. R.O. Suzuki and S. Inoue, Metall. Mater. Trans. B 34, 277 (2003).

    Article  Google Scholar 

  24. I. Park, T. Abiko, and T.H. Okabe, J. Phys. Chem. Solids 66, 410 (2005).

    Article  Google Scholar 

  25. T.A. Henrie, H. Dolezal, and E.K. Kleespies, U.S. Patent 3,140,170 A, 1964.

  26. R. Bolívar and B. Friedrich, in Proc. EMC 2009, (TMS, Innsbruck, 2009), pp. 1–17.

  27. C. Won, H. Nersisyan, and H. Won, Chem. Eng. J. 157, 270 (2010).

    Article  Google Scholar 

  28. H. Nersisyan, J. Lee, and C. Won, Mater. Res. Bull. 38, 1135 (2003).

    Article  Google Scholar 

  29. M. Eshed, A. Irzh, and A. Gedanken, Inorg. Chem. 48, 7066 (2009).

    Article  Google Scholar 

  30. Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T.Y. Zhang, P. Sun, M.L. Free, and J. Guo, Chem. Eng. J. 286, 517 (2016).

    Article  Google Scholar 

  31. Y. Zhang, Z.Z. Fang, P. Sun, T.Y. Zhang, Y. Xia, C.S. Zhou, and Z. Huang, J. Am. Chem. Soc. 138, 6916 (2016).

    Article  Google Scholar 

  32. R.L. Fisher, U.S. Patent 4,923,531, 1990.

  33. R.O. Suzuki, A. Saguchi, W. Takahashi, T. Yagura, and K. Ono, Mater. Trans. 42, 2492 (2001).

    Article  Google Scholar 

  34. T. Okabe, T. Oishi, and K. Ono, J. Alloys Compd. 184, 43 (1992).

    Article  Google Scholar 

  35. J.M. Oh, B.K. Lee, C.Y. Suh, S.W. Cho, and J.W. Lim, Mater. Trans. 53, 1075 (2012).

    Article  Google Scholar 

  36. Z. Zak Fang, Y. Xia, P. Sun, and Y. Zhang, Patent Application 62/086,524, 2016.

  37. Y. Xia, Z.Z. Fang, P. Sun, Y. Zhang, T.Y. Zhang, and M. Free, J. Mater. Sci. 52, 4120 (2017).

    Article  Google Scholar 

  38. Y. Zhang, Z.Z. Fang, Y. Xia, P. Sun, B. Van Devener, M. Free, H. Lefler, and S.L. Zheng, Chem. Eng. J. 308, 299 (2017).

    Article  Google Scholar 

  39. D. Fray, T. Farthing, and Z. Chen, U.S. Patent 10/778,529, 2004.

  40. G.Z. Chen, D.J. Fray, and T.W. Farthing, Nature 407, 361 (2000).

    Article  Google Scholar 

  41. G.Z. Chen, in Advances in Powder Metallurgy: Properties, Processing and Application, ed. by I. Chang, Y. Zhao (Woodhead publishing, Cambridge, 2013)

  42. C. Schwandt and D.J. Fray, Electrochim. Acta 51, 66 (2005).

    Article  Google Scholar 

  43. R. Bhagat, D. Dye, S.L. Raghunathan, R.J. Talling, D. Inman, B.K. Jackson, K.K. Rao, and R.J. Dashwood, Acta Mater. 58, 5057 (2010).

    Article  Google Scholar 

  44. D.T.L. Alexander, C. Schwandt, and D.J. Fray, Electrochim. Acta 56, 3286 (2011).

    Article  Google Scholar 

  45. R.O. Suzuki and K. Ono, in Proc. 18th Annual ITA Conf., (International Titanium Associate Orlando, FL, 2002), pp. 1–24.

  46. R.O. Suzuki, K. Ono, and K. Teranuma, Metall. Mater. Trans. B 34, 287 (2003).

    Article  Google Scholar 

  47. R.O. Suzuki and S. Fukui, Mater. Trans. 45, 1665 (2004).

    Article  Google Scholar 

  48. R.O. Suzuki, J. Phys. Chem. Solids 66, 461 (2005).

    Article  Google Scholar 

  49. K. Ono and R. Suzuki, JOM 54, 59 (2002).

    Article  Google Scholar 

  50. F. Gardarelli, U.S. Patent 7,504,017 B2, 2009.

  51. H.M. Zhu, Q.Y. Wang, and S.Q. Jiao, Patent Application CN 201310421132.7, 2013.

  52. J.C. Withers and R.O. Loutfy, U.S. Patent 7410562 B2, 2008.

  53. D.J. Fray and S.Q. Jiao, Patent Application PCT/GB2010/051237, 2010.

  54. E. Wainer, U.S. Patent 2722509, 1955.

  55. S.Q. Jiao, H.M. Zhu, and X.F. Gu, Patent Application CN 200510011684.6, 2005

  56. S.Q. Jiao and H.M. Zhu, J. Alloys Compd. 438, 243 (2007).

    Article  Google Scholar 

  57. Q.Y. Wang, J. Song, J. Wu, S.Q. Jiao, J. Hou, and H.M. Zhu, Phys. Chem. Chem. Phys. 16, 8086 (2014).

    Article  Google Scholar 

  58. D. Jewell, S.Q. Jiao, M. Kurtanjek, and D.J. Fray: Titanium Metal Production via Oxycarbide Electrorefining (International Titanium Association, 2012).

  59. U.B. Pal, JOM 60, 43 (2008).

    Article  Google Scholar 

  60. M. Suput, R. Delucas, S. Pati, G. Ye, U. Pal, and A.C. Powell, Miner. Process. Extr. Metall. Rev. 117, 118 (2008).

    Article  Google Scholar 

  61. U.B. Pal and A.C. Powell, JOM 59, 44 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support by the Advanced Research Project Agency for Energy (ARPA-E) of the US DOE (DE-AR0000420) through the Modern Electro/Thermochemical Advances in Light-Metal Systems (METALS) program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zhang or Zhigang Zak Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Fang, Z.Z., Sun, P. et al. A Perspective on Thermochemical and Electrochemical Processes for Titanium Metal Production. JOM 69, 1861–1868 (2017). https://doi.org/10.1007/s11837-017-2481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2481-9

Navigation