Skip to main content
Log in

Computational Modelling and Mechanical Characteristics of Polymeric Hybrid Composite Materials: An Extensive Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This study explores the reinforcement of foreign materials (fibers/particles) in polymeric composites, aiming to improve structural characteristics under variable loads. The article critically reviews experimental techniques for composite fabrication, computational modelling, and analysis. It also offers a detailed examination of mechanical properties, manufacturing defects, and applications associated with these composites. Hybrid composites (HC) are highlighted for their exceptional potential across various engineering applications, demonstrating enhanced structural attributes without imposing a weight penalty or surpassing the parent structure’s overall weight. The review explores into the influences of multiple defects, surface treatment, and other parameters affecting the structural integrity of HC during fabrication and application. Furthermore, the article provides a comprehensive understanding, including HC classifications, benefits, and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dong J, Locquet A, Declercq NF, Citrin DS (2016) Polarization-resolved terahertz imaging of intra- A nd inter-laminar damages in hybrid fiber-reinforced composite laminate subject to low-velocity impact. Compos Part B Eng 92:167–174. https://doi.org/10.1016/j.compositesb.2016.02.016

    Article  Google Scholar 

  2. Summerscales J, Short D (1978) Carbon fibre and glass fibre hybrid reinforced plastics. Composites 9:157–166. https://doi.org/10.1016/0010-4361(78)90341-5

    Article  Google Scholar 

  3. Swolfs Y, Gorbatikh L, Verpoest I (2014) Fibre hybridisation in polymer composites: a review. Compos Part A Appl Sci Manuf 67:181–200. https://doi.org/10.1016/j.compositesa.2014.08.027

    Article  Google Scholar 

  4. Rajkumar G, Srinivasan J, Suvitha L (2015) Natural protein fiber hybrid composites: effects of fiber content and fiber orientation on mechanical, thermal conductivity and water absorption properties. J Ind Text 44:709–724. https://doi.org/10.1177/1528083713512355

    Article  Google Scholar 

  5. Safri SNA, Sultan MTH, Jawaid M, Jayakrishna K (2018) Impact behaviour of hybrid composites for structural applications: a review. Compos Part B Eng 133:112–121. https://doi.org/10.1016/j.compositesb.2017.09.008

    Article  Google Scholar 

  6. Jeevi G, Nayak SK, Abdul Kader M (2019) Review on adhesive joints and their application in hybrid composite structures. J Adhes Sci Technol 33:1497–1520. https://doi.org/10.1080/01694243.2018.1543528

    Article  Google Scholar 

  7. Zhu R, Zhang X, Zhang S et al (2022) Modeling and topology optimization of cylindrical shells with partial CLD treatment. Int J Mech Sci 220:107145. https://doi.org/10.1016/j.ijmecsci.2022.107145

    Article  Google Scholar 

  8. Hameed AM, Daway EG (2014) Mechanism of hybrid reinforcement and its effect on some properties of binary polymer blend. Eng & TechJ 32:287–301

    Article  Google Scholar 

  9. Bhudolia SK, Kam KKC, Joshi SC (2018) Mechanical and vibration response of insulated hybrid composites. J Ind Text 47:1887–1907. https://doi.org/10.1177/1528083717714481

    Article  Google Scholar 

  10. Randjbaran E, Zahari R, Abdul Jalil NA, Abang Abdul Majid DL (2014) Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing. Sci World J. https://doi.org/10.1155/2014/413753

    Article  Google Scholar 

  11. Bandaru AK, Vetiyatil L, Ahmad S (2015) The effect of hybridization on the ballistic impact behavior of hybrid composite armors. Compos Part B Eng 76:300–319. https://doi.org/10.1016/j.compositesb.2015.03.012

    Article  Google Scholar 

  12. Jawaid M, Khalil HPSA (2015) Cellulosic / synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18. https://doi.org/10.1016/j.carbpol.2011.04.043

    Article  Google Scholar 

  13. Yan R, Wang R, Lou CW, Lin JH (2015) Low-velocity impact and static behaviors of high-resilience thermal-bonding inter/intra-ply hybrid composites. Compos Part B Eng 69:58–68. https://doi.org/10.1016/j.compositesb.2014.09.021

    Article  Google Scholar 

  14. Ashraf W, Nawab Y, Umair M et al (2017) Investigation of mechanical behavior of woven/knitted hybrid composites. J Text Inst 108:1510–1517. https://doi.org/10.1080/00405000.2016.1258951

    Article  Google Scholar 

  15. Czél G, Jalalvand M, Wisnom MR (2016) Design and characterisation of advanced pseudo-ductile unidirectional thin-ply carbon/epoxy-glass/epoxy hybrid composites. Compos Struct 143:362–370. https://doi.org/10.1016/j.compstruct.2016.02.010

    Article  Google Scholar 

  16. Murugan R, Ramesh R, Padmanabhan K (2016) Investigation of the mechanical behavior and vibration characteristics of thin walled glass/carbon hybrid composite beams under a fixed-free boundary condition. Mech Adv Mater Struct 23:909–916. https://doi.org/10.1080/15376494.2015.1056394

    Article  Google Scholar 

  17. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  Google Scholar 

  18. Pandya KS, Pothnis JR, Ravikumar G, Naik NK (2013) Ballistic impact behavior of hybrid composites. Mater Des 44:128–135. https://doi.org/10.1016/j.matdes.2012.07.044

    Article  Google Scholar 

  19. Muñoz R, Martínez-Hergueta F, Gálvez F et al (2015) Ballistic performance of hybrid 3D woven composites: experiments and simulations. Compos Struct 127:141–151. https://doi.org/10.1016/j.compstruct.2015.03.021

    Article  Google Scholar 

  20. Kalantari M, Dong C, Davies IJ (2016) Multi-objective robust optimisation of unidirectional carbon/glass fibre reinforced hybrid composites under flexural loading. Compos Struct 138:264–275. https://doi.org/10.1016/j.compstruct.2015.11.034

    Article  Google Scholar 

  21. Sismanoglu S, Gungor A, Aslan B, Sen D (2017) The synthesis and mechanical characterisation of laminated hybrid-epoxy matrix composites. Int J Mining, Reclam Environ 31:382–388. https://doi.org/10.1080/17480930.2017.1326076

    Article  Google Scholar 

  22. Feng J, Safaei B, Qin Z, Chu F (2023) Effects of graphene surface morphology on damping properties of epoxy composites. Polymer (Guildf) 281:126107. https://doi.org/10.1016/j.polymer.2023.126107

    Article  Google Scholar 

  23. Panthapulakkal S, Sain M (2007) Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—Mechanical, water absorption and thermal properties. J Appl Polym Sci 103:2432–2441. https://doi.org/10.1002/app.25486

    Article  Google Scholar 

  24. Sarasini F, Tirillò J, D’Altilia S et al (2016) Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Compos Part B Eng 91:144–153. https://doi.org/10.1016/j.compositesb.2016.01.050

    Article  Google Scholar 

  25. Pothan LA, Cherian BM, Anandakutty B, Thomas S (2007) Effect of layering pattern on the water absorption behavior of banana glass hybrid composites. J Appl Polym Sci 105:2540–2548. https://doi.org/10.1002/app.25663

    Article  Google Scholar 

  26. Thwe MM, Liao K (2002) Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos - Part A Appl Sci Manuf 33:43–52. https://doi.org/10.1016/S1359-835X(01)00071-9

    Article  Google Scholar 

  27. Flynn J, Amiri A, Ulven C (2016) Hybridized carbon and flax fiber composites for tailored performance. Mater Des 102:21–29. https://doi.org/10.1016/j.matdes.2016.03.164

    Article  Google Scholar 

  28. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 35:371–376. https://doi.org/10.1016/j.compositesa.2003.09.016

    Article  Google Scholar 

  29. Atiqah A, Maleque MA, Jawaid M, Iqbal M (2014) Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications. Compos Part B Eng 56:68–73. https://doi.org/10.1016/j.compositesb.2013.08.019

    Article  Google Scholar 

  30. Suriani MJ, Rapi HZ, Ilyas RA et al (2021) Delamination and manufacturing defects in natural fiber-reinforced hybrid composite: a review. Polymers (Basel) 13:1–24. https://doi.org/10.3390/polym13081323

    Article  Google Scholar 

  31. Bakkal M, Savas M (2013) Development of natural fiber reinforced laminated hybrid composites. Adv Mater Res 628:15–20. https://doi.org/10.4028/www.scientific.net/AMR.628.15

    Article  Google Scholar 

  32. Pan Y, Zhong Z (2015) The effect of hybridization on moisture absorption and mechanical degradation of natural fiber composites: an analytical approach. Compos Sci Technol 110:132–137. https://doi.org/10.1016/j.compscitech.2015.02.005

    Article  Google Scholar 

  33. Di Maida P, Sciancalepore C, Radi E, Bondioli F (2018) Effects of nano-silica treatment on the flexural post cracking behaviour of polypropylene macro-synthetic fibre reinforced concrete. Mech Res Commun 88:12–18. https://doi.org/10.1016/j.mechrescom.2018.01.004

    Article  Google Scholar 

  34. Saidane EH, Scida D, Assarar M et al (2016) Hybridisation effect on diffusion kinetic and tensile mechanical behaviour of epoxy based flax–glass composites. Compos Part A Appl Sci Manuf 87:153–160. https://doi.org/10.1016/j.compositesa.2016.04.023

    Article  Google Scholar 

  35. de Queiroz HFM, Banea MD, Cavalcanti DKK (2020) Experimental analysis of adhesively bonded joints in synthetic- and natural fibre-reinforced polymer composites. J Compos Mater 54:1245–1255. https://doi.org/10.1177/0021998319876979

    Article  Google Scholar 

  36. Tajdini M, Hajialilue Bonab M, Golmohamadi S (2018) An Experimental investigation on effect of adding natural and synthetic fibres on mechanical and behavioural parameters of soil-cement materials. Int J Civ Eng 16:353–370. https://doi.org/10.1007/s40999-016-0118-y

    Article  Google Scholar 

  37. Singh T, Gangil B, Patnaik A et al (2019) Physico-mechanical, thermal and dynamic mechanical behaviour of natural-synthetic fiber reinforced vinylester based homogenous and functionally graded composites. Mater Res Exp. https://doi.org/10.1088/2053-1591/aaee30

    Article  Google Scholar 

  38. Hajiha H, Sain M (2015) High toughness hybrid biocomposite process optimization. Compos Sci Technol 111:44–49. https://doi.org/10.1016/j.compscitech.2015.03.002

    Article  Google Scholar 

  39. Salman SD, Sharba MJ, Leman Z et al (2016) Hybrid composites failure. BioResources 11:3575–3586

    Google Scholar 

  40. Yahaya R, Sapuan SM, Jawaid M et al (2014) Quasi-static penetration and ballistic properties of kenaf-aramid hybrid composites. Mater Des 63:775–782. https://doi.org/10.1016/j.matdes.2014.07.010

    Article  Google Scholar 

  41. Yahaya R, Sapuan SM, Jawaid M et al (2015) Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf-aramid hybrid laminated composites. Mater Des 67:173–179. https://doi.org/10.1016/j.matdes.2014.11.024

    Article  Google Scholar 

  42. Petrucci R, Santulli C, Puglia D et al (2015) Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Compos Part B Eng 69:507–515. https://doi.org/10.1016/j.compositesb.2014.10.031

    Article  Google Scholar 

  43. Muhammad YH, Ahmad S, Abu Bakar MA et al (2015) Mechanical properties of hybrid glass/kenaf fibre-reinforced epoxy composite with matrix modification using liquid epoxidised natural rubber. J Reinf Plast Compos 34:896–906. https://doi.org/10.1177/0731684415584431

    Article  Google Scholar 

  44. Madsen B, Hashemi F, Tahir P (2016) Control and design of volumetric composition in pultruded hybrid fibre composites. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/139/1/012033

    Article  Google Scholar 

  45. Johnson S, Kang L, Akil HM (2016) Mechanical behavior of jute hybrid bio-composites. Compos Part B Eng 91:83–93. https://doi.org/10.1016/j.compositesb.2015.12.052

    Article  Google Scholar 

  46. Dalbehera S, Acharya SK (2015) Impact of stacking sequence on tribological wear performance of woven Jute-glass hybrid epoxy composites. Tribol - Mater Surfaces Interfaces 9:196–201. https://doi.org/10.1080/17515831.2015.1121343

    Article  Google Scholar 

  47. Sarasini F, Tirillò J, Ferrante L et al (2014) Drop-weight impact behaviour of woven hybrid basalt-carbon/epoxy composites. Compos Part B Eng 59:204–220. https://doi.org/10.1016/j.compositesb.2013.12.006

    Article  Google Scholar 

  48. Szakács J, Mészáros L (2018) Synergistic effects of carbon nanotubes on the mechanical properties of basalt and carbon fiber-reinforced polyamide 6 hybrid composites. J Thermoplast Compos Mater 31:553–571. https://doi.org/10.1177/0892705717713055

    Article  Google Scholar 

  49. Tirillò J, Ferrante L, Sarasini F et al (2017) High velocity impact behaviour of hybrid basalt-carbon/epoxy composites. Compos Struct 168:305–312. https://doi.org/10.1016/j.compstruct.2017.02.039

    Article  Google Scholar 

  50. Bandaru AK, Patel S, Sachan Y et al (2016) Low velocity impact response of 3D angle-interlock Kevlar/basalt reinforced polypropylene composites. Mater Des 105:323–332. https://doi.org/10.1016/j.matdes.2016.05.075

    Article  Google Scholar 

  51. Cerbu C, Botiş M (2017) Numerical modeling of the flax / glass / epoxy hybrid composite materials in bending. Procedia Eng 181:308–315. https://doi.org/10.1016/j.proeng.2017.02.394

    Article  Google Scholar 

  52. Ridzuan MJM, Majid MSA, Afendi M et al (2016) Thermal behaviour and dynamic mechanical analysis of Pennisetum purpureum/glass-reinforced epoxy hybrid composites. Compos Struct 152:850–859. https://doi.org/10.1016/j.compstruct.2016.06.026

    Article  Google Scholar 

  53. Rana RS, Kumre A, Rana S, Purohit R (2017) Characterization of properties of epoxy sisal / glass fiber reinforced hybrid composite. Mater Today Proc 4:5445–5451. https://doi.org/10.1016/j.matpr.2017.05.056

    Article  Google Scholar 

  54. Hashmi SAR, Naik A, Chand N et al (2011) Development of environment friendly hybrid layered sisal-glass-epoxy composites. Compos Interfaces 18:671–683. https://doi.org/10.1163/156855412X626252

    Article  Google Scholar 

  55. Angrizani CC, Ornaghi HL, Zattera AJ, Amico SC (2017) Thermal and mechanical investigation of interlaminate glass/curaua hybrid polymer composites. J Nat Fibers 14:271–277. https://doi.org/10.1080/15440478.2016.1193091

    Article  Google Scholar 

  56. Ramachandra Reddy G, Ashok Kumar M, Karthikeyan N, Mahaboob Basha S (2015) Tamarind fruit fiber and glass fiber reinforced polyester composites. Mech Adv Mater Struct 22:770–775. https://doi.org/10.1080/15376494.2013.862330

    Article  Google Scholar 

  57. Li H, Liu Y, Zhang H et al (2023) Amplitude-dependent damping characteristics of all-composite sandwich plates with a foam-filled hexagon honeycomb core. Mech Syst Signal Process 186:109845. https://doi.org/10.1016/j.ymssp.2022.109845

    Article  Google Scholar 

  58. Akgöz B, Civalek Ö (2018) Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment. Compos Part B Eng 150:68–77. https://doi.org/10.1016/j.compositesb.2018.05.049

    Article  Google Scholar 

  59. Feng J, Safaei B, Qin Z, Chu F (2023) Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene. Compos Sci Technol 233:109925. https://doi.org/10.1016/j.compscitech.2023.109925

    Article  Google Scholar 

  60. Zuhudi NZM, Lin RJT, Jayaraman K (2016) Flammability, thermal and dynamic mechanical properties of bamboo-glass hybrid composites. J Thermoplast Compos Mater 29:1210–1228. https://doi.org/10.1177/0892705714563118

    Article  Google Scholar 

  61. Ramesh M, Palanikumar K, Hemachandra Reddy K (2016) Evaluation of mechanical and interfacial properties of sisal/jute/glass hybrid fiber reinforced polymer composites. Trans Indian Inst Met 69:1851–1859. https://doi.org/10.1007/s12666-016-0844-5

    Article  Google Scholar 

  62. Malviya RK, Singh RK, Purohit R, Sinha R (2019) Natural fibre reinforced composite materials: environmentally better life cycle assessment - A case study. Mater Today Proc 26:3157–3160. https://doi.org/10.1016/j.matpr.2020.02.651

    Article  Google Scholar 

  63. Dastjerdi S, Akgöz B, Civalek Ö et al (2020) On the non-linear dynamics of torus-shaped and cylindrical shell structures. Int J Eng Sci 156:103371. https://doi.org/10.1016/j.ijengsci.2020.103371

    Article  MathSciNet  Google Scholar 

  64. Albas ŞD, Ersoy H, Akgöz B, Civalek Ö (2021) Dynamic analysis of a fiber-reinforced composite beam under a moving load by the ritz method. Mathematics. https://doi.org/10.3390/math9091048

    Article  Google Scholar 

  65. Herrera-Franco PJ, Valadez-González A (2004) Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos Part A Appl Sci Manuf 35:339–345. https://doi.org/10.1016/j.compositesa.2003.09.012

    Article  Google Scholar 

  66. Alavudeen A, Rajini N, Karthikeyan S et al (2015) Mechanical properties of banana / kenaf fiber-reinforced hybrid polyester composites : effect of woven fabric and random orientation. Mater Des 66:246–257. https://doi.org/10.1016/j.matdes.2014.10.067

    Article  Google Scholar 

  67. Senthil Kumar K, Siva I, Rajini N et al (2016) Layering pattern effects on vibrational behavior of coconut sheath/banana fiber hybrid composites. Mater Des 90:795–803. https://doi.org/10.1016/j.matdes.2015.11.051

    Article  Google Scholar 

  68. Fiore V, Scalici T, Calabrese L et al (2016) Effect of external basalt layers on durability behaviour of fl ax reinforced composites. Compos Part B 84:258–265. https://doi.org/10.1016/j.compositesb.2015.08.087

    Article  Google Scholar 

  69. Karaduman Y, Sayeed MMA, Onal L, Rawal A (2014) Viscoelastic properties of surface modified jute fiber/polypropylene nonwoven composites. Compos Part B Eng 67:111–118. https://doi.org/10.1016/j.compositesb.2014.06.019

    Article  Google Scholar 

  70. Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159. https://doi.org/10.1016/j.conbuildmat.2015.12.075

    Article  Google Scholar 

  71. Singha K (2012) A short review on basalt fiber. Int J Textile Sci 1:19–28. https://doi.org/10.5923/j.textile.20120104.02

    Article  Google Scholar 

  72. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B Eng 43:2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053

    Article  Google Scholar 

  73. Fertier A, Montarnal A, Truptil S, Bénaben F (2020) Jo ur na l P re Jo ur l P re. Decis Support Syst 113260. https://doi.org/10.1016/j.nhres.2023.06.006

  74. Norrrahim MNF, Misenan MSM, Janudin N et al (2023) A review on palm fibre-reinforced polyester composites. Polyester-Based Biocomposites 7:99–120. https://doi.org/10.1201/9781003270980-6

    Article  Google Scholar 

  75. Singh AP, Zafar S, Suman S, Pathak H (2024) Mechanical and electromagnetic interference shielding properties of natural fiber reinforced polymer composite with carbon nanotubes addition. Polym Compos. https://doi.org/10.1002/pc.28075

    Article  Google Scholar 

  76. Ranjan R, Bajpai PK, Tyagi RK (2013) Mechanical characterization of banana/sisal fibre reinforced PLA hybrid composites for structural application. Eng Int 1:39–48. https://doi.org/10.18034/ei.v1i1.216

    Article  Google Scholar 

  77. Jawaid M, Alothman OY, Paridah MT, Khalil HPSA (2014) Effect of oil palm and jute fiber treatment on mechanical performance of epoxy hybrid composites. Int J Polym Anal Charact 19:62–69. https://doi.org/10.1080/1023666X.2014.858429

    Article  Google Scholar 

  78. Živković I, Fragassa C, Pavlović A, Brugo T (2017) Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Compos Part B Eng 111:148–164. https://doi.org/10.1016/j.compositesb.2016.12.018

    Article  Google Scholar 

  79. Yusoff RB, Takagi H, Nakagaito AN (2016) Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind Crops Prod 94:562–573. https://doi.org/10.1016/j.indcrop.2016.09.017

    Article  Google Scholar 

  80. Gupta MK (2017) Effect of frequencies on dynamic mechanical properties of hybrid jute/sisal fibre reinforced epoxy composite. Adv Mater Process Technol 3:651–664. https://doi.org/10.1080/2374068X.2017.1365443

    Article  Google Scholar 

  81. Venkatachalam G, Shankar AG, Vijay KV et al (2015) Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/87/1/012108

    Article  Google Scholar 

  82. Sathishkumar TP, Naveen J, Navaneethakrishnan P et al (2017) Characterization of sisal/cotton fibre woven mat reinforced polymer hybrid composites. J Ind Text 47:429–452. https://doi.org/10.1177/1528083716648764

    Article  Google Scholar 

  83. Devireddy SBR, Biswas S (2016) Physical and thermal properties of unidirectional banana-jute hybrid fiber-reinforced epoxy composites. J Reinf Plast Compos 35:1157–1172. https://doi.org/10.1177/0731684416642877

    Article  Google Scholar 

  84. Jamshaid H, Mishra R, Militky J et al (2016) Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers Polym 17:1675–1686. https://doi.org/10.1007/s12221-016-6563-z

    Article  Google Scholar 

  85. Jeremy Jeba Samuel J, Ramadoss R, Gunasekaran KN et al (2021) Studies on mechanical properties and characterization of carbon fiber reinforced hybrid composite for aero space application. Mater Today Proc 47:4438–4443. https://doi.org/10.1016/j.matpr.2021.05.304

    Article  Google Scholar 

  86. Suriani MJ, Ilyas RA, Zuhri MYM et al (2021) Critical review of natural fiber reinforced hybrid composites: processing, properties, applications and cost. Polymers (Basel) 13:1–43. https://doi.org/10.3390/polym13203514

    Article  Google Scholar 

  87. Venkatarajan S, Subbu C, Athijayamani A, Muthuraja R (2021) Mechanical properties of natural cellulose fibers reinforced polymer composites - 2015–2020: a review. Mater Today Proc 47:1017–1024. https://doi.org/10.1016/j.matpr.2021.05.547

    Article  Google Scholar 

  88. Sreekala MS, Kumaran MG, Thomas S (2002) Water sorption in oil palm fiber reinforced phenol formaldehyde composites. Compos - Part A Appl Sci Manuf 33:763–777. https://doi.org/10.1016/S1359-835X(02)00032-5

    Article  Google Scholar 

  89. Pan S, Feng J, Safaei B et al (2022) A comparative experimental study on damping properties of epoxy nanocomposite beams reinforced with carbon nanotubes and graphene nanoplatelets. Nanotechnol Rev 11:1658–1669. https://doi.org/10.1515/ntrev-2022-0107

    Article  Google Scholar 

  90. Yang H, Lei H, Lu G et al (2020) Energy absorption and failure pattern of hybrid composite tubes under quasi-static axial compression. Compos Part B Eng 198:108217. https://doi.org/10.1016/j.compositesb.2020.108217

    Article  Google Scholar 

  91. Jamir MRM, Majid MSA, Khasri A (2018) Natural lightweight hybrid composites for aircraft structural applications. Elsevier Ltd, Amsterdam

    Book  Google Scholar 

  92. Assarar M, Zouari W, Sabhi H et al (2015) Evaluation of the damping of hybrid carbon – flax reinforced composites. Compos Struct 132:148–154. https://doi.org/10.1016/j.compstruct.2015.05.016

    Article  Google Scholar 

  93. Kumar CS, Arumugam V, Dhakal HN, John R (2015) Effect of temperature and hybridisation on the low velocity impact behavior of hemp-basalt / epoxy composites. Compos Struct 125:407–416. https://doi.org/10.1016/j.compstruct.2015.01.037

    Article  Google Scholar 

  94. Moe M, Liao K (2003) Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Sci Technol 63:375–387

    Article  Google Scholar 

  95. Sreekala MS, George J, Kumaran MG, Thomas S (2002) The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Compos Sci Technol 62:339–353

    Article  Google Scholar 

  96. Kumar V, Panda SK, Dwivedi M et al (2023) Nonlinear modal responses of damaged shell structures: numerical prediction and experimental validation. AIAA J 61:2299–2308. https://doi.org/10.2514/1.J062679

    Article  Google Scholar 

  97. Civalek Ö, Dastjerdi S, Akgöz B (2022) Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mech Based Des Struct Mach 50:1914–1931. https://doi.org/10.1080/15397734.2020.1766494

    Article  Google Scholar 

  98. Sinha AK, Narang HK, Bhattacharya S (2020) Mechanical properties of hybrid polymer composites: a review. J Brazilian Soc Mech Sci Eng 42:1–13. https://doi.org/10.1007/s40430-020-02517-w

    Article  Google Scholar 

  99. Vinyas M (2021) Computational analysis of smart magneto-electro-elastic materials and structures: review and classification. Springer, Berlin

    Google Scholar 

  100. Hollaway LC, Cadei J (2002) Progress in the technique of upgrading metallic structures with advanced polymer composites. Prog Struct Eng Mater. https://doi.org/10.1002/pse.112

    Article  Google Scholar 

  101. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Composites : Part A Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos Part A 40:404–412. https://doi.org/10.1016/j.compositesa.2009.01.002

    Article  Google Scholar 

  102. Manalo AC, Wani E, Azwa N, Karunasena W (2015) Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fi bre e polyester composites. Compos Part B 80:73–83. https://doi.org/10.1016/j.compositesb.2015.05.033

    Article  Google Scholar 

  103. Garg A, Chalak HD, Zenkour AM et al (2022) A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures. Springer, Berlin

    Book  Google Scholar 

  104. Palacio-Betancur A, Gutierrez Soto M (2023) Recent advances in computational methodologies for real-time hybrid simulation of engineering structures. Arch Comput Methods Eng 30:1637–1662. https://doi.org/10.1007/s11831-022-09848-y

    Article  Google Scholar 

  105. Feng J, Safaei B, Qin Z et al (2023) Bio-inspired metallic cellular material with extraordinary energy dissipation capability. Chem Eng J 475:146382. https://doi.org/10.1016/j.cej.2023.146382

    Article  Google Scholar 

  106. Indra Reddy M, Anil Kumar M, Rama Bhadri Raju C (2018) Tensile and flexural properties of jute, pineapple leaf and glass fiber reinforced polymer matrix hybrid composites. Mater Today Proc 5:458–462. https://doi.org/10.1016/j.matpr.2017.11.105

    Article  Google Scholar 

  107. Aslan M, Tufan M, Küçükömeroğlu T (2018) Tribological and mechanical performance of sisal-filled waste carbon and glass fibre hybrid composites. Compos Part B Eng 140:241–249. https://doi.org/10.1016/j.compositesb.2017.12.039

    Article  Google Scholar 

  108. Shrivastava R, Telang A, Rana RS, Purohit R (2017) Mechanical properties of coir/ G lass fiber epoxy resin hybrid composite. Mater Today Proc 4:3477–3483. https://doi.org/10.1016/j.matpr.2017.02.237

    Article  Google Scholar 

  109. Thakur A, Purohit R, Rana RS, Bandhu D (2018) Characterization and evaluation of mechanical behavior of epoxy-CNT-bamboo matrix hybrid composites. Mater Today Proc 5:3971–3980. https://doi.org/10.1016/j.matpr.2017.11.655

    Article  Google Scholar 

  110. Vijaya Ramnath B, Sharavanan R, Chandrasekaran M et al (2015) Experimental determination of mechanical properties of banana jute hybrid composite. Fibers Polym 16:164–172. https://doi.org/10.1007/s12221-015-0164-0

    Article  Google Scholar 

  111. Kaliappan P, Kesavan R, Vijaya Ramnath B (2017) Investigation on effect of fibre hybridization and orientation on mechanical behaviour of natural fibre epoxy composite. Bull Mater Sci 40:773–782. https://doi.org/10.1007/s12034-017-1420-2

    Article  Google Scholar 

  112. Arumuga Prabu V, Uthayakumar M, Manikandan V et al (2014) Influence of redmud on the mechanical, damping and chemical resistance properties of banana/polyester hybrid composites. Mater Des 64:270–279. https://doi.org/10.1016/j.matdes.2014.07.020

    Article  Google Scholar 

  113. Dong C, Ranaweera-Jayawardena HA, Davies IJ (2012) Flexural properties of hybrid composites reinforced by S-2 glass and T700S carbon fibres. Compos Part B Eng 43:573–581. https://doi.org/10.1016/j.compositesb.2011.09.001

    Article  Google Scholar 

  114. Ary Subagia IDG, Kim Y, Tijing LD et al (2014) Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers. Compos Part B Eng 58:251–258. https://doi.org/10.1016/j.compositesb.2013.10.027

    Article  Google Scholar 

  115. Masoumi M, Mansoori H, Dastan T, Sheikhzadeh M (2022) An experimental investigation into flexural properties of hybrid carbon-basalt triaxially braided composite lamina. Compos Struct 284:115231. https://doi.org/10.1016/j.compstruct.2022.115231

    Article  Google Scholar 

  116. Watson G, Starost K, Bari P et al (2017) tensile and flexural properties of hybrid graphene oxide / epoxy carbon fibre reinforced composites. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/195/1/012009

    Article  Google Scholar 

  117. Akash GNSV, Rao KVS, Arunkumar DS (2018) Effect of samanea saman pod pulp on sisal/coir fiber hybrid composites. Mater Today Proc 5:3064–3069. https://doi.org/10.1016/j.matpr.2018.01.108

    Article  Google Scholar 

  118. Jawaid M, Abdul Khalil HPS, Abu Bakar A (2011) Woven hybrid composites: tensile and flexural properties of oil palm-woven jute fibres based epoxy composites. Mater Sci Eng A 528:5190–5195. https://doi.org/10.1016/j.msea.2011.03.047

    Article  Google Scholar 

  119. Wang B, He B, Wang Z et al (2021) Enhanced impact properties of hybrid composites reinforced by carbon fiber and polyimide fiber. Polymers (Basel) 13:1–9. https://doi.org/10.3390/polym13162599

    Article  Google Scholar 

  120. Meo M, Marulo F, Guida M, Russo S (2013) Shape memory alloy hybrid composites for improved impact properties for aeronautical applications. Compos Struct 95:756–766. https://doi.org/10.1016/j.compstruct.2012.08.011

    Article  Google Scholar 

  121. Ismail KI, Sultan MTH, Shah AUM et al (2019) Low velocity impact and compression after impact properties of hybrid bio-composites modified with multi-walled carbon nanotubes. Compos Part B Eng 163:455–463. https://doi.org/10.1016/j.compositesb.2019.01.026

    Article  Google Scholar 

  122. Ahmad Nadzri SNZ, Hameed Sultan MT, Shah AUM et al (2020) A review on the kenaf/glass hybrid composites with limitations on mechanical and low velocity impact properties. Polymers (Basel) 12:1–13. https://doi.org/10.3390/POLYM12061285

    Article  Google Scholar 

  123. Pegoretti A, Fabbri E, Migliaresi C, Pilati F (2004) Intraply and interply hybrid composites based on E-glass and poly(vinyl alcohol) woven fabrics: Tensile and impact properties. Polym Int 53:1290–1297. https://doi.org/10.1002/pi.1514

    Article  Google Scholar 

  124. Venkata Reddy G, Venkata Naidu S, Shobha Rani T (2008) Impact properties of kapok based unsaturated polyester hybrid composites. J Reinf Plast Compos 27:1789–1804. https://doi.org/10.1177/0731684407087380

    Article  Google Scholar 

  125. Wang X, Hu B, Feng Y et al (2008) Low velocity impact properties of 3D woven basalt/aramid hybrid composites. Compos Sci Technol 68:444–450. https://doi.org/10.1016/j.compscitech.2007.06.016

    Article  Google Scholar 

  126. Akgöz B, Civalek Ö (2022) Buckling analysis of functionally graded tapered microbeams via rayleigh-ritz method. Mathematics 10:1–13. https://doi.org/10.3390/math10234429

    Article  Google Scholar 

  127. Hamouda T, Hassanin AH, Saba N et al (2019) Evaluation of mechanical and physical properties of hybrid composites from food packaging and textiles wastes. J Polym Environ 27:489–497. https://doi.org/10.1007/s10924-019-01369-3

    Article  Google Scholar 

  128. Yadav PS, Purohit R, Namdev A (2022) Physical and mechanical properties of hybrid composites using Kevlar fibre and nano-SiO2. Adv Mater Process Technol 8:2057–2069. https://doi.org/10.1080/2374068X.2022.2034312

    Article  Google Scholar 

  129. Ashori A, Sheshmani S (2010) Hybrid composites made from recycled materials: moisture absorption and thickness swelling behavior. Bioresour Technol 101:4717–4720. https://doi.org/10.1016/j.biortech.2010.01.060

    Article  Google Scholar 

  130. Radzi AM, Sapuan SM, Jawaid M, Mansor MR (2019) Water absorption, thickness swelling and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites. J Mater Res Technol 8:3988–3994. https://doi.org/10.1016/j.jmrt.2019.07.007

    Article  Google Scholar 

  131. Jawaid M, Abdul Khalil HPS, Noorunnisa Khanam P, Abu Bakar A (2011) Hybrid composites made from oil palm empty fruit bunches/jute fibres: water absorption, thickness swelling and density behaviours. J Polym Environ 19:106–109. https://doi.org/10.1007/s10924-010-0203-2

    Article  Google Scholar 

  132. Mohebby B, Younesi H, Ghotbifar A, Kazemi-Najafi S (2010) Water and moisture absorption and thickness swelling behavior in polypropylene/wood flour/glass fiber hybrid composites. J Reinf Plast Compos 29:830–839. https://doi.org/10.1177/0731684408100702

    Article  Google Scholar 

  133. Thiagamani SMK, Krishnasamy S, Muthukumar C et al (2019) Investigation into mechanical, absorption and swelling behaviour of hemp/sisal fibre reinforced bioepoxy hybrid composites: effects of stacking sequences. Int J Biol Macromol 140:637–646. https://doi.org/10.1016/j.ijbiomac.2019.08.166

    Article  Google Scholar 

  134. Davis M, Bond D (1999) Repair design. Int J Adhes Adhes 19:91–105

    Article  Google Scholar 

  135. Hariss.A.F BA, (1999) Harris 1999 مهم.Pdf. Int J Ahesion & Adhesives 19:445–452

    Google Scholar 

  136. Critchlow GW, Yendall KA, Bahrani D et al (2006) Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys. Int J Adhes Adhes 26:419–453. https://doi.org/10.1016/j.ijadhadh.2005.07.001

    Article  Google Scholar 

  137. Thomas LC, Kumar V, Gangwar A et al (2023) Computational modelling and experimental techniques for fibre metal laminate structural analysis: a comprehensive review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-09980-3

    Article  Google Scholar 

  138. Gonzalez-Canche NG, Flores-Johnson EA, Cortes P, Carrillo JG (2018) Evaluation of surface treatments on 5052–H32 aluminum alloy for enhancing the interfacial adhesion of thermoplastic-based fiber metal laminates. Int J Adhes Adhes 82:90–99. https://doi.org/10.1016/j.ijadhadh.2018.01.003

    Article  Google Scholar 

  139. Liu Z, Simonetto E, Ghiotti A, Bruschi S (2022) Experimental and numerical investigation of the effect of metal surface treatments on the delamination behaviour of magnesium alloy-based fibre metal laminates. CIRP J Manuf Sci Technol 38:442–456. https://doi.org/10.1016/j.cirpj.2022.05.015

    Article  Google Scholar 

  140. Aghamohammadi H, Hosseini Abbandanak SN, Eslami-Farsani R, Siadati SMH (2018) Effects of various aluminum surface treatments on the basalt fiber metal laminates interlaminar adhesion. Int J Adhes Adhes 84:184–193. https://doi.org/10.1016/j.ijadhadh.2018.03.005

    Article  Google Scholar 

  141. Zhang X, Ma Q, Dai Y et al (2018) Effects of surface treatments and bonding types on the interfacial behavior of fiber metal laminate based on magnesium alloy. Appl Surf Sci 427:897–906. https://doi.org/10.1016/j.apsusc.2017.09.024

    Article  Google Scholar 

  142. Mehr ME, Aghamohammadi H, Abbandanak SNH et al (2019) Effects of applying a combination of surface treatments on the mechanical behavior of basalt fiber metal laminates. Int J Adhes Adhes 92:133–141. https://doi.org/10.1016/j.ijadhadh.2019.04.015

    Article  Google Scholar 

  143. Zheng X, Zhao Z, Chu Z et al (2021) Effect of surface treatment methods on the interfacial behavior of fiber metal laminate based on WE43 magnesium alloy. Int J Adhes Adhes 110:102957. https://doi.org/10.1016/j.ijadhadh.2021.102957

    Article  Google Scholar 

  144. Zhu W, Xiao H, Wang J, Fu C (2019) Characterization and properties of AA6061-based fiber metal laminates with different aluminum-surface pretreatments. Compos Struct 227:111321. https://doi.org/10.1016/j.compstruct.2019.111321

    Article  Google Scholar 

  145. Varma PCR, Colreavy J, Cassidy J et al (2009) Effect of organic chelates on the performance of hybrid sol-gel coated AA 2024–T3 aluminium alloys. Prog Org Coatings 66:406–411. https://doi.org/10.1016/j.porgcoat.2009.09.004

    Article  Google Scholar 

  146. Batu T, Lemu HG (2020) Investigation of mechanical properties of false banana/glass fiber reinforced hybrid composite materials. Results Mater 8:100152. https://doi.org/10.1016/j.rinma.2020.100152

    Article  Google Scholar 

  147. Saleem A, Shabanana Tabusum SZ, Sadik Batcha M (2014) Holistic approach of research work. Int J Sci Res Publ 4:504–510

    Google Scholar 

  148. Saba N, Jawaid M, Sultan MTH (2018) An overview of mechanical and physical testing of composite materials. Elsevier Ltd, Amsterdam

    Google Scholar 

  149. Salleh Z, Berhan MN, Hyie KM et al (2013) Open hole tensile properties of Kenaf composite and Kenaf/fibreglass hybrid composite laminates. Procedia Eng 68:399–404. https://doi.org/10.1016/j.proeng.2013.12.198

    Article  Google Scholar 

  150. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  Google Scholar 

  151. Salleh Z, Yunus S, Masdek NRNM et al (2018) Tensile and flexural test on kenaf hybrid composites. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/328/1/012018

    Article  Google Scholar 

  152. Zhang F, Liu W, Wang L et al (2015) Flexural behavior of hybrid composite beams with a bamboo layer and lattice ribs. J Reinf Plast Compos 34:521–533. https://doi.org/10.1177/0731684415573811

    Article  Google Scholar 

  153. Sabarinathan C, Muthu S, Naushad Ali M (2012) Experimental study on tensile behavior of multi wall carbon nanotube reinforced epoxy composites. J Appl Sci Res 8:3253–3259

    Google Scholar 

  154. Gawdzinska K, Szymanski P, Bryll K, et al (2017) Flexural Strength of Hybrid Epoxy Composites With Carbon Fiber. Compos Theory Pract 17:47–50 WE-Emerging Sources Citation Index (ESCI)

  155. Diharjo K, Priyanto K, Purwanto A, et al (2013) Study of flexural strength on hybrid composite of glass/carbon-bisphenol for developing car body of electrical vehicle. Proc 2013 Jt Int Conf Rural Inf Commun Technol Electr Technol rICT ICEV-T 2013 1–4. https://doi.org/10.1109/rICT-ICeVT.2013.6741522

  156. Ghasemnejad H, Furquan ASM, Mason PJ (2010) Charpy impact damage behaviour of single and multi-delaminated hybrid composite beam structures. Mater Des 31:3653–3660. https://doi.org/10.1016/j.matdes.2010.02.045

    Article  Google Scholar 

  157. Arpatappeh FA, Azghan MA, Eslami-Farsani R (2020) The effect of stacking sequence of basalt and Kevlar fibers on the Charpy impact behavior of hybrid composites and fiber metal laminates. Proc Inst Mech Eng Part C J Mech Eng Sci 234:3270–3279. https://doi.org/10.1177/0954406220914325

    Article  Google Scholar 

  158. Bozkurt ÖY, Erkliğ A, Bulut M (2018) Hybridization effects on charpy impact behavior of basalt/aramid fiber reinforced hybrid composite laminates. Polym Compos 39:467–475. https://doi.org/10.1002/pc.23957

    Article  Google Scholar 

  159. Santhosh MS, Sasikumar R, Natrayan L et al (2018) Investigation of mechanical and electrical properties of kevlar/E-glass and basalt/E-glass reinforced hybrid composites. Int J Mech Prod Eng Res Dev 8:591–598. https://doi.org/10.24247/ijmperdjun201863

    Article  Google Scholar 

  160. Saba N (2014) Izod Impact. An overview of mechanical and physical testing of composite materials. Elsevier Ltd, Amsterdam, p 20

    Google Scholar 

  161. Ahmed KS, Vijayarangan S, Rajput C (2006) Mechanical behavior of isothalic polyester-based untreated woven jute and glass fabric hybrid composites. J Reinf Plast Compos 25:1549–1569. https://doi.org/10.1177/0731684406066747

    Article  Google Scholar 

  162. Saito S, Ogawa F, Itoh T (2019) Fatigue life properties of stainless steels in wide ranged biaxial stress state. Eng Mater 795:60–65. https://doi.org/10.4028/www.scientific.net/KEM.795.60

    Article  Google Scholar 

  163. Cabral TD (2017) A first approach to structural health monitoring of adhesive bonded joints in pipelines using integrated fiber optic. Sensors. https://doi.org/10.13140/RG.2.2.10258.25283

    Article  Google Scholar 

  164. Da Silva Cirilo PH, Nogueira CL, De Paiva JMF et al (2017) Fractographic and rheological characterizations of CF/PP-PE-copolymer composites tested in tensile. Polimeros 27:108–115. https://doi.org/10.1590/0104-1428.2355

    Article  Google Scholar 

  165. Rajkumar K, Ramraji K, Hariprakash VP, Gnanavelbabu A (2020) Comparison study of mechanical and dynamic vibration properties of hole defect introduced in hybrid polymer composite. Mater Today Proc 27:677–682. https://doi.org/10.1016/j.matpr.2019.10.078

    Article  Google Scholar 

  166. Senthil K, Arockiarajan A, Palaninathan R et al (2013) Defects in composite structures: its effects and prediction methods - A comprehensive review. Compos Struct 106:139–149. https://doi.org/10.1016/j.compstruct.2013.06.008

    Article  Google Scholar 

  167. Elhajjar RF, Shams SS, Kemeny GJ, Stuessy G (2016) A hybrid numerical and imaging approach for characterizing defects in composite structures. Compos Part A Appl Sci Manuf 81:98–104. https://doi.org/10.1016/j.compositesa.2015.10.027

    Article  Google Scholar 

  168. Civalek Ö, Uzun B, Yaylı MÖ (2022) An effective analytical method for buckling solutions of a restrained FGM nonlocal beam. Comput Appl Math 41:1–20. https://doi.org/10.1007/s40314-022-01761-1

    Article  MathSciNet  Google Scholar 

  169. Demir Ç, Mercan K, Numanoglu HM, Civalek Ö (2018) Bending response of nanobeams resting on elastic foundation. J Appl Comput Mech 4:105–114. https://doi.org/10.22055/jacm.2017.22594.1137

    Article  Google Scholar 

  170. Petrů M, Novák O (2017) Measurement and numerical modeling of mechanical properties of polyurethane foams. Asp Polyurethanes. https://doi.org/10.5772/intechopen.69700

    Article  Google Scholar 

  171. Sobhani E, Arbabian A, Civalek Ö, Avcar M (2022) The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells. Eng Comput 38:3125–3152. https://doi.org/10.1007/s00366-021-01453-0

    Article  Google Scholar 

  172. Xu J, Lomov SV, Verpoest I et al (2015) A progressive damage model of textile composites on meso-scale using finite element method: fatigue damage analysis. Comput Struct 152:96–112. https://doi.org/10.1016/j.compstruc.2015.02.005

    Article  Google Scholar 

  173. Toledo MWE, Nallim LG, Luccioni BM (2008) A micro-macromechanical approach for composite laminates. Mech Mater 40:885–906. https://doi.org/10.1016/j.mechmat.2008.05.004

    Article  Google Scholar 

  174. Wennberg D, Stichel S, Wennhage P (2014) Finite difference adaptation of the decomposition of layered composite structures on irregular grid. J Compos Mater 48:2427–2439. https://doi.org/10.1177/0021998313499196

    Article  Google Scholar 

  175. Melro AR, Camanho PP, Andrade Pires FM, Pinho ST (2013) Micromechanical analysis of polymer composites reinforced by unidirectional fibres: part II-Micromechanical analyses. Int J Solids Struct 50:1906–1915. https://doi.org/10.1016/j.ijsolstr.2013.02.007

    Article  Google Scholar 

  176. Carrer JAM, Costa VL (2015) Boundary element method formulations for the solution of the scalar wave equation in one-dimensional problems. J Brazilian Soc Mech Sci Eng 37:959–971. https://doi.org/10.1007/s40430-014-0226-z

    Article  Google Scholar 

  177. Liu YJ, Nishimura N, Otani Y et al (2005) A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model. J Appl Mech Trans ASME 72:115–128. https://doi.org/10.1115/1.1825436

    Article  Google Scholar 

  178. Lingyun P, Adams DO, Rizzo FJ (1998) Boundary element analysis for composite materials and a library of green’s functions. Comput Struct 66:685–693. https://doi.org/10.1016/s0045-7949(97)00114-4

    Article  Google Scholar 

  179. Civalek Ö, Avcar M (2022) Free vibration and buckling analyses of CNT reinforced laminated non - rectangular plates by discrete singular convolution method. Eng Comput 38:489–521. https://doi.org/10.1007/s00366-020-01168-8

    Article  Google Scholar 

  180. Overview A, Conservation EA Terra Literature Review

  181. Wang Y-H, Xu D, Tsui KY (2008) Discrete element modeling of contact creep and aging in sand. J Geotech Geoenvironmental Eng 134:1407–1411. https://doi.org/10.1061/(asce)1090-0241(2008)134:9(1407)

    Article  Google Scholar 

  182. Bouhfid N, Raji M, Boujmal R et al (2018) Numerical modeling of hybrid composite materials. Woodhead Publishing, Sawston

    Google Scholar 

  183. Jiang X, Song J, Qiang X et al (2016) Moisture absorption/desorption effects on flexural property of glass-fiber-reinforced polyester laminates: three-point bending test and coupled hygro-mechanical finite element analysis. Polymers (Basel). https://doi.org/10.3390/polym8080290

    Article  Google Scholar 

  184. Riva E, Nicoletto G (2005) Modeling and prediction of the mechanical properties of woven laminates by the finite element method. Fract Damage Compos 21:105–125. https://doi.org/10.2495/978-1-85312-669-7/05

    Article  Google Scholar 

  185. Ostoja-Starzewski M (2002) Microstructural randomness versus representative volume element in thermomechanics. J Appl Mech Trans ASME 69:25–35. https://doi.org/10.1115/1.1410366

    Article  Google Scholar 

  186. Hu H, Onyebueke L, Abatan A (2010) Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J Miner Mater Charact Eng 09:275–319. https://doi.org/10.4236/jmmce.2010.94022

    Article  Google Scholar 

  187. Sadd MH (2021) Numerical finite and boundary element methods. Elasticity. https://doi.org/10.1016/b978-0-12-815987-3.00016-5

    Article  Google Scholar 

  188. Gun H, Kose G (2014) Prediction of longitudinal modulus of aligned discontinuous fiber-reinforced composites using boundary element method. Sci Eng Compos Mater 21:219–221. https://doi.org/10.1515/secm-2013-0055

    Article  Google Scholar 

  189. Li D (2021) Layerwise theories of laminated composite structures and their applications: a review. Arch Comput Methods Eng 28:577–600. https://doi.org/10.1007/s11831-019-09392-2

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangwar, A., Kumar, V., Yaylaci, M. et al. Computational Modelling and Mechanical Characteristics of Polymeric Hybrid Composite Materials: An Extensive Review. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10097-4

Navigation