Skip to main content
Log in

Automated Computationally Intelligent Methods for Ocular Vessel Segmentation and Disease Detection: A Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Ocular diseases are eventually increasing these days that cause partial or complete vision loss even at an early age, the prominent reason behind this is cardiovascular diseases that cause diabetic retinopathy (DR), hypertensive retinopathy(HR), Glaucoma, and abnormal lesions. For early diagnosis of these diseases, we need to analyze the internal anatomical structure of the retina especially the morphology of vasculature. Identification of subtle abnormalities in blood vessels is required for accurate diagnosis of different ocular diseases as blood vessels are the key features of the retina. Many researchers have elucidated different traditional as well as automated machine learning and deep learning-based methodologies for vessel segmentation and disease detection. In the majority of recent techniques, the performance parameters are improved time and again. The advancement in automated techniques can propel early diagnosis so an extensive study is needed to find the gaps. A systematic review of various existing methodologies for vessel segmentation and ocular disease detection and classification is presented in this paper that gives a comprehensive idea about the recent trends related to this subject. A comparative analysis of various methodologies that have been used so far for computer-aided diagnosis of different ocular disease is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Upadhyay AK, Bhandari AK (2023) Semi-supervised modified-UNet for lung infection image segmentation. IEEE Trans Radiat Plasma Med Sci. 7:638–649

    Article  Google Scholar 

  2. Verma PR, Bhandari AK (2023) Role of deep learning in classification of brain MRI images for prediction of disorders: a survey of emerging trends. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-09967-0

    Article  Google Scholar 

  3. Pandey SK, Bhandari AK (2023) A systematic review of modern approaches in healthcare systems for lung cancer detection and classification. Arch Comput Methods Eng 30:1–20

    Article  Google Scholar 

  4. Kumar R, Bhandari AK (2022) Luminosity and contrast enhancement of retinal vessel images using weighted average histogram. Biomed Signal Process Control 71:103089

    Article  Google Scholar 

  5. Singh N, Bhandari AK (2021) Principal component analysis-based low-light image enhancement using reflection model. IEEE Trans Instrum Meas 70:1–10

    Google Scholar 

  6. Kumar S, Bhandari AK (2021) Automatic tissue attenuation-based contrast enhancement of low-dynamic X-Ray images. IEEE Trans Radiat Plasma Med Sci 6(5):574–582

    Article  Google Scholar 

  7. Kumar S, Bhandari AK, Raj A, Swaraj K (2021) Triple clipped histogram-based medical image enhancement using spatial frequency. IEEE Trans Nanobiosci 20(3):278–286

    Article  Google Scholar 

  8. Liu J, Fan X, Jiang J, Liu R, Luo Z (2022) Learning a deep multi-scale feature ensemble and an edge-attention guidance for image fusion. IEEE Trans Circuits Syst Video Technol 32(1):105–119. https://doi.org/10.1109/TCSVT.2021.3056725

    Article  CAS  Google Scholar 

  9. Bhandari AK, Ghosh A, Kumar IV (2020) A local contrast fusion based 3D Otsu algorithm for multilevel image segmentation. IEEE CAA J Autom Sinica 7(1):200–213

    Article  Google Scholar 

  10. Usman M, Fraz MM, Barman SA (2017) Computer vision techniques applied for diagnostic analysis of retinal OCT images: a review. Arch Comput Methods Eng 24(3):449–465. https://doi.org/10.1007/s11831-016-9174-3

    Article  MathSciNet  Google Scholar 

  11. Guo Q, Zhang C, Zhang Y, Liu H (2016) An efficient SVD-based method for image denoising. IEEE Trans Circuits Syst Video Technol 26(5):868–880. https://doi.org/10.1109/TCSVT.2015.2416631

    Article  Google Scholar 

  12. Zhao Z, Xiong B, Wang L, Ou Q, Yu L, Kuang F (2022) RetinexDIP: a unified deep framework for low-light image enhancement. IEEE Trans Circuits Syst Video Technol 32(3):1076–1088. https://doi.org/10.1109/TCSVT.2021.3073371

    Article  Google Scholar 

  13. Ortego D, SanMiguel JC, Martinez JM (2019) Hierarchical improvement of foreground segmentation masks in background subtraction. IEEE Trans Circuits Syst Video Technol 29(6):1645–1658. https://doi.org/10.1109/TCSVT.2018.2851440

    Article  Google Scholar 

  14. Ma S, Zhang X, Jia C, Zhao Z, Wang S, Wang S (2020) Image and video compression with neural networks: a review. IEEE Trans Circuits Syst Video Technol 30(6):1683–1698. https://doi.org/10.1109/tcsvt.2019.2910119

    Article  Google Scholar 

  15. Mo S et al (2022) Mutual information-based graph co-attention resonance imaging segmentation. IEEE Trans Circuits Syst Video Technol 32(5):2512–2526

    Article  Google Scholar 

  16. Ram K, Joshi GD, Sivaswamy J (2011) A successive clutter-rejection-based approach for early detection of diabetic retinopathy. IEEE Trans Biomed Eng 58(3):664–673. https://doi.org/10.1109/TBME.2010.2096223

    Article  PubMed  Google Scholar 

  17. Roychowdhury S, Koozekanani DD, Parhi KK (2014) DREAM: diabetic retinopathy analysis using machine learning. IEEE J Biomed Heal Informatics 18(5):1717–1728. https://doi.org/10.1109/JBHI.2013.2294635

    Article  Google Scholar 

  18. Dubey SR (2021) A decade survey of content based image retrieval using deep learning. IEEE Transactions on Circuits and Systems for Video Technology 32(5):2687–2704

  19. Nunes F et al (2021) A mobile tele-ophthalmology system for planned and opportunistic screening of diabetic retinopathy in primary care. IEEE Access 9:83740–83750. https://doi.org/10.1109/ACCESS.2021.3085404

    Article  Google Scholar 

  20. “Mishra C, Tripathy K.” https://www.ncbi.nlm.nih.gov/books/NBK585111/

  21. Ma Y, Hao H, Xie J, Fu H, Member S (2021) ROSE : a retinal OCT-angiography vessel segmentation dataset and new model. IEEE Trans on Med Imaging 40(3):928–939. https://doi.org/10.1109/TMI.2020.3042802

    Article  Google Scholar 

  22. Kwan CC, Fawzi AA (2019) Imaging and biomarkers in diabetic macular edema and diabetic retinopathy. Curr Diabetic Rep. https://doi.org/10.1007/s11892-019-1226-2

    Article  Google Scholar 

  23. Imran A, Li J, Pei Y, Yang JJ, Wang Q (2019) Comparative analysis of vessel segmentation techniques in retinal images. IEEE Access 7:114862–114887. https://doi.org/10.1109/ACCESS.2019.2935912

    Article  Google Scholar 

  24. Mateen M, Wen J, Hassan M, Nasrullah N, Sun S, Hayat S (2020) Automatic detection of diabetic retinopathy: a review on datasets, methods and evaluation metrics. IEEE Access 8:48784–48811. https://doi.org/10.1109/ACCESS.2020.2980055

    Article  Google Scholar 

  25. Hoover A (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210. https://doi.org/10.1109/42.845178

    Article  CAS  PubMed  Google Scholar 

  26. Cherukuri V, Bg VK, Bala R, Monga V (2020) Deep retinal image segmentation with regularization under geometric priors. IEEE Trans Image Process 29:2552–2567. https://doi.org/10.1109/TIP.2019.2946078

    Article  ADS  Google Scholar 

  27. Automated Retinal Image Analysis (ARIA) Data Set – Damian JJ Farnell. https://www.damianjjfarnell.com/?page_id=276 accessed 27 Jul 2023

  28. Hrf images for DR | Kaggle” https://www.kaggle.com/datasets/lavanya456/hrf-images-for-dr/code accessed 28 Jul 2023

  29. Kauppi T et al. (2007) The DIARETDB1 diabetic retinopathy database and evaluation protocol. In: British Machine Vision Conference, https://api.semanticscholar.org/CorpusID:15483141

  30. Xiang D et al (2019) Automatic retinal layer segmentation of OCT images with central serous retinopathy. IEEE J Biomed Heal Inform 23(1):283–295. https://doi.org/10.1109/JBHI.2018.2803063

    Article  Google Scholar 

  31. Sivaswamy J, Krishnadas SR, Joshi GD, Ujjwal MJ, Tabish S (2014) Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th Int. Symp. Biomed. Imaging, ISBI 2014, pp 53–56, https://doi.org/10.1109/isbi.2014.6867807

  32. Fumero F, Alayon S, Sanchez JL, Sigut J, Gonzalez-Hernandez M (2011) RIM-ONE: an open retinal image database for optic nerve evaluation. In: Proc. - IEEE Symp. Comput. Med. Syst., pp. 1–6, https://doi.org/10.1109/CBMS.2011.5999143

  33. Fu H, Li F, Orlando JI, Bogunović H, Sun X, Liao J, Zhang X (2019) REFUGE: retinal fundus glaucoma challenge. IEEE Dataport. https://doi.org/10.21227/tz6e-r977

  34. Zhang Z et al. (2010) ORIGA-light : an online retinal fundus image database for glaucoma analysis and research. In: 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC’10, pp. 3065–3068, https://doi.org/10.1109/IEMBS.2010.5626137

  35. Porwal P et al (2018) Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research. Data 3:25. https://doi.org/10.3390/DATA3030025

    Article  Google Scholar 

  36. APTOS 2019 Blindness Detection | Kaggle. https://www.kaggle.com/c/aptos2019-blindness-detection accessed 28 Jul 2023

  37. Hu Z, Niemeijer M, Abràmoff MD, Garvin MK (2012) Multimodal retinal vessel segmentation from spectral-domain optical coherence tomography and fundus photography. IEEE Trans Med Imaging 31(10):1900–1911. https://doi.org/10.1109/TMI.2012.2206822

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dashtbozorg B, Mendonca AM, Campilho A (2014) An automatic graph-based approach for artery/Vein classification in retinal images. IEEE Trans Image Process 23(3):1073–1083. https://doi.org/10.1109/TIP.2013.2263809

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  39. Lau QP, Lee ML, Hsu W, Wong TY (2013) Simultaneously identifying all true vessels from segmented retinal images. IEEE transactions on biomedical engineering 60(7):1851–1858

  40. Zhu H, Zhang J, Xu G, Deng L (2021) Tensor field graph-cut for image segmentation: a non-convex perspective. IEEE Trans Circuits Syst Video Technol 31(3):1103–1113. https://doi.org/10.1109/TCSVT.2020.2995866

    Article  Google Scholar 

  41. Huang F, Tan T, Dashtbozorg B, Zhou Y, Romeny BMTH (2020) From local to global: a graph framework for retinal artery/vein classification. IEEE Trans Nanobioscience 19(4):589–597. https://doi.org/10.1109/TNB.2020.3004481

    Article  PubMed  Google Scholar 

  42. Jiang Z, Yepez J, An S, Ko S (2017) Fast, accurate and robust retinal vessel segmentation system. Biocybern Biomed Eng 37(3):412–421. https://doi.org/10.1016/j.bbe.2017.04.001

    Article  Google Scholar 

  43. Kaur J, Mittal D (2017) A generalized method for the detection of vascular structure in pathological retinal images. Biocybern Biomed Eng 37(1):184–200. https://doi.org/10.1016/j.bbe.2016.09.002

    Article  Google Scholar 

  44. Momeni-Pour A, Seyedarabi H, Abbasi-Jahromi SH, Javadzadeh A (2020) Automatic detection and monitoring of diabetic retinopathy using efficient convolutional neural networks and contrast limited adaptive histogram equalization. IEEE Access 8:136668–136673. https://doi.org/10.1109/ACCESS.2020.3005044

    Article  Google Scholar 

  45. Preity, Jayanthi N (2020) A segmentation technique of retinal blood vessels using multi-threshold and morphological operations. In: 2020 Int. Conf. Comput. Perform. Eval. ComPE 2020, pp. 447–452, https://doi.org/10.1109/ComPE49325.2020.9200042

  46. Marín D, Aquino A, Gegúndez-arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30(1):146–158

    Article  PubMed  Google Scholar 

  47. Fan Z, Lu J, Wei C, Huang H, Cai X, Chen X (2019) A hierarchical image matting model for blood vessel segmentation in fundus images. IEEE Trans Image Process 28(5):2367–2377. https://doi.org/10.1109/TIP.2018.2885495

    Article  ADS  MathSciNet  Google Scholar 

  48. Yan Z, Yang X, Cheng KT (2018) A skeletal similarity metric for quality evaluation of retinal vessel segmentation. IEEE Trans Med Imaging 37(4):1045–1057. https://doi.org/10.1109/TMI.2017.2778748

    Article  PubMed  Google Scholar 

  49. Ramos-Soto O et al (2021) An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2021.105949

    Article  PubMed  Google Scholar 

  50. Mapayi T, Viriri S, Tapamo J (2015) Adaptive thresholding technique for retinal vessel segmentation based on GLCM-energy information. Comput Math Methods in Med. https://doi.org/10.1155/2015/597475

    Article  Google Scholar 

  51. Salazar-Gonzalez A, Kaba D, Li Y, Liu X (2014) Segmentation of the blood vessels and optic disk in retinal images. IEEE J Biomed Heal Inform 18(6):1874–1886. https://doi.org/10.1109/JBHI.2014.2302749

    Article  Google Scholar 

  52. Roychowdhury S, Koozekanani DD, Parhi KK (2015) Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J Biomed Heal Inform 19(3):1118–1128. https://doi.org/10.1109/JBHI.2014.2335617

    Article  Google Scholar 

  53. Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34(9):1797–1807. https://doi.org/10.1109/TMI.2015.2409024

    Article  PubMed  Google Scholar 

  54. Roychowdhury S, Koozekanani DD, Kuchinka SN, Parhi KK (2016) Optic disc boundary and vessel origin segmentation of fundus images. IEEE J Biomed Heal Inform 20(6):1562–1574. https://doi.org/10.1109/JBHI.2015.2473159

    Article  Google Scholar 

  55. Dash J, Bhoi N (2017) A thresholding based technique to extract retinal blood vessels from fundus images. Futur Comput Inform J 2(2):103–109. https://doi.org/10.1016/j.fcij.2017.10.001

    Article  Google Scholar 

  56. Tang P, Liang Q, Yan X, Zhang D, Coppola G, Sun W (2019) Multi-proportion channel ensemble model for retinal vessel segmentation. Comput Biol Med 111:103352. https://doi.org/10.1016/j.compbiomed.2019.103352

    Article  PubMed  Google Scholar 

  57. Zhao S, Chen W (2021) Retinal image segmentation based on multiple features method. In: 2021 6th Int. Conf. Image, Vis. Comput. ICIVC 2021, pp. 124–128, 2021, https://doi.org/10.1109/ICIVC52351.2021.9526956

  58. Yugander P, Abhishek K, Reddy PS, Manideep G, Sahithi T, Jagannath M (2022) Extraction of blood vessels from retinal fundus images using maximum principal curvatures and adaptive histogram equalization. In: 2022 1st Int. Conf. Electr. Electron. Inf. Commun. Technol. ICEEICT 2022, no. 2, pp. 1–4, 2022, https://doi.org/10.1109/ICEEICT53079.2022.9768517

  59. Anne Frank Joe A, Megalan Leo L, Yogalakshmi S, Veeramuthu A, Kalist V (2022) An extensive analysis of retina segmentation based on structural screening using fuzzy based morphologic theories. In: Proc. Int. Conf. Electron. Renew. Syst. ICEARS 2022, no. Icears, pp. 1113–1119, 2022, https://doi.org/10.1109/ICEARS53579.2022.9752083

  60. Iqbal S, Naveed K, Naqvi SS, Naveed A, Khan TM (2023) Robust retinal blood vessel segmentation using a patch-based statistical adaptive multi-scale line detector. Digit Signal Process A Rev J. 139:104075. https://doi.org/10.1016/j.dsp.2023.104075

    Article  Google Scholar 

  61. Sindhusaranya B, Geetha MR (2023) Retinal blood vessel segmentation using root Guided decision tree assisted enhanced Fuzzy C-mean clustering for disease identification. Biomed Signal Process Control 82:104525. https://doi.org/10.1016/j.bspc.2022.104525

    Article  Google Scholar 

  62. Mapayi T, Viriri S, Tapamo J (2015) Comparative study of retinal vessel segmentation based on global thresholding techniques. Comput Math Methods Med. https://doi.org/10.1155/2015/895267

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380. https://doi.org/10.1109/TMI.2016.2546227

    Article  PubMed  Google Scholar 

  64. Zhu C et al (2017) Retinal vessel segmentation in colour fundus images using extreme learning machine. Comput Med Imaging Graph 55:68–77. https://doi.org/10.1016/j.compmedimag.2016.05.004

    Article  PubMed  Google Scholar 

  65. Goatman KA, Fleming AD, Philip S, Williams GJ, Olson JA, Sharp PF (2011) Disc using retinal photographs. IEEE Trans Med Imaging 30(4):972–979

    Article  PubMed  Google Scholar 

  66. Zou B et al (2021) Multi-label classification scheme based on local regression for retinal vessel segmentation. IEEE/ACM Trans Comput Biol Bioinforma 18(6):2586–2597. https://doi.org/10.1109/TCBB.2020.2980233

    Article  Google Scholar 

  67. Rodrigues EO, Conci A, Liatsis P (2020) ELEMENT: multi-modal retinal vessel segmentation based on a coupled region growing and machine learning approach. IEEE J Biomed Heal Inform 24(12):3507–3519. https://doi.org/10.1109/JBHI.2020.2999257

    Article  Google Scholar 

  68. Tang X, Zhong B, Peng J, Hao B, Li J (2020) Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation. Appl Soft Comput J 93:106353. https://doi.org/10.1016/j.asoc.2020.106353

    Article  Google Scholar 

  69. Kamran SA, Hossain KF, Tavakkoli A, Zuckerbrod SL, Sanders KM, Baker SA (2021) RV-GAN: segmenting retinal vascular structure in fundus photographs using a novel multi-scale generative adversarial network. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12908 LNCS, pp. 34–44, 2021, https://doi.org/10.1007/978-3-030-87237-3_4

  70. Fu Q, Li S, Wang X (2020) MSCNN-AM: a multi-scale convolutional neural network with attention mechanisms for retinal vessel segmentation. IEEE Access 8:163926–163936. https://doi.org/10.1109/ACCESS.2020.3022177

    Article  Google Scholar 

  71. Wang Y et al (2021) Robust content-adaptive global registration for multimodal retinal images using weakly supervised deep-learning framework. IEEE Trans Image Process 30:3167–3178. https://doi.org/10.1109/TIP.2021.3058570

    Article  ADS  PubMed  Google Scholar 

  72. Yin P, Yuan R, Cheng Y, Wu Q (2020) Deep guidance network for biomedical image segmentation. IEEE Access 8:116106–116116. https://doi.org/10.1109/ACCESS.2020.3002835

    Article  Google Scholar 

  73. Soomro TA, Mahmood-Khan T, Khan MAU, Gao J, Paul M, Zheng L (2018) Impact of ICA-based image enhancement technique on retinal blood vessels segmentation. IEEE Access 6:3524–3538. https://doi.org/10.1109/ACCESS.2018.2794463

    Article  Google Scholar 

  74. Soomro TA et al (2019) Deep learning models for retinal blood vessels segmentation: a review. IEEE Access 7:71696–71717. https://doi.org/10.1109/ACCESS.2019.2920616

    Article  Google Scholar 

  75. Park KB, Choi SH, Lee JY (2020) M-GAN: retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access 8:146308–146322. https://doi.org/10.1109/ACCESS.2020.3015108

    Article  Google Scholar 

  76. Luo Z, Zhang Y, Zhou L, Zhang B, Luo J, Wu H (2019) Micro-vessel image segmentation based on the AD-UNet model. IEEE Access 7:143402–143411. https://doi.org/10.1109/ACCESS.2019.2945556

    Article  Google Scholar 

  77. Jin Q, Meng Z, Pham TD, Chen Q, Wei L, Su R (2019) DUNet: A deformable network for retinal vessel segmentation. Knowl-Based Syst 178:149–162. https://doi.org/10.1016/j.knosys.2019.04.025

    Article  Google Scholar 

  78. Oliveira A, Pereira S, Silva CA (2018) Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst Appl 112:229–242. https://doi.org/10.1016/j.eswa.2018.06.034

    Article  Google Scholar 

  79. Orlando JI, Prokofyeva E, Blaschko MB (2017) A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans Biomed Eng 64(1):16–27. https://doi.org/10.1109/TBME.2016.2535311

    Article  PubMed  Google Scholar 

  80. Yan Z, Yang X, Cheng K (2019) A three-stage deep learning model for accurate retinal vessel segmentation. IEEE J Biomed Heal Inform 23(4):1427–1436

    Article  Google Scholar 

  81. Wang D, Haytham A, Pottenburgh J, Saeedi O, Tao Y (2020) Hard attention net for automatic retinal vessel segmentation. IEEE J Biomed Heal Inform 24(12):3384–3396. https://doi.org/10.1109/JBHI.2020.3002985

    Article  Google Scholar 

  82. Lian S, Li L, Lian G, Xiao X, Luo Z, Li S (2021) A global and local enhanced residual U-net for accurate retinal vessel segmentation. IEEE/ACM Trans Comput Biol Bioinform 18(3):852–862. https://doi.org/10.1109/TCBB.2019.2917188

    Article  PubMed  Google Scholar 

  83. Li K, Qi X, Luo Y, Yao Z, Zhou X, Sun M (2021) Accurate retinal vessel segmentation in color fundus images via fully attention-based networks. IEEE J Biomed Heal Inform 25(6):2071–2081. https://doi.org/10.1109/JBHI.2020.3028180

    Article  Google Scholar 

  84. Wang B, Wang S, Qiu S, Wei W, Wang H, He H (2021) CSU-Net: a context spatial U-net for accurate blood vessel segmentation in fundus images. IEEE J Biomed Heal Inform 25(4):1128–1138. https://doi.org/10.1109/JBHI.2020.3011178

    Article  Google Scholar 

  85. Li X, Jiang Y, Li M, Yin S (2021) Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Trans Ind Inform 17(3):1958–1967. https://doi.org/10.1109/TII.2020.2993842

    Article  Google Scholar 

  86. Sethuraman S, Palakuzhiyil-Gopi V (2022) Staircase-Net: a deep learning based architecture for retinal blood vessel segmentation. Sadhana Acad Proc Eng Sci. https://doi.org/10.1007/s12046-022-01936-w

    Article  Google Scholar 

  87. Yuan Y, Zhang L, Wang L, Huang H (2022) Multi-level attention network for retinal vessel segmentation. IEEE J Biomed Heal Inform 26(1):312–323. https://doi.org/10.1109/JBHI.2021.3089201

    Article  Google Scholar 

  88. Yang Y, Wan W, Huang S, Zhong X, Kong X (2023) RADCU-Net: residual attention and dual-supervision cascaded U-Net for retinal blood vessel segmentation. Int J Mach Learn Cybern 14(5):1605–1620. https://doi.org/10.1007/s13042-022-01715-3

    Article  Google Scholar 

  89. Kar MK, Neog DR, Nath MK (2023) Retinal vessel segmentation using multi-scale residual convolutional neural network (MSR-Net) combined with generative adversarial networks. Circuits Syst Signal Process 42(2):1206–1235. https://doi.org/10.1007/s00034-022-02190-5

    Article  Google Scholar 

  90. Li D, Peng L, Peng S, Xiao H, Zhang Y (2023) Retinal vessel segmentation by using AFNet. Vis Comput 39(5):1929–1941. https://doi.org/10.1007/s00371-022-02456-8

    Article  Google Scholar 

  91. Yakut C, Oksuz I, Ulukaya S (2023) A hybrid fusion method combining spatial image filtering with parallel channel network for retinal vessel segmentation. Arab J Sci Eng 48(5):6149–6162. https://doi.org/10.1007/s13369-022-07311-5

    Article  Google Scholar 

  92. Shin SY, Lee S, Yun ID, Lee KM (2019) Deep vessel segmentation by learning graphical connectivity. Med Image Anal 58:101556. https://doi.org/10.1016/j.media.2019.101556

    Article  PubMed  Google Scholar 

  93. Khan TM et al (2022) Width-wise vessel bifurcation for improved retinal vessel segmentation. Biomed Signal Process Control 71:103169. https://doi.org/10.1016/j.bspc.2021.103169

    Article  MathSciNet  Google Scholar 

  94. Shah SAA, Shahzad A, Khan MA, Lu CK, Tang TB (2019) Unsupervised method for retinal vessel segmentation based on gabor wavelet and multiscale line detector. IEEE Access 7:167221–167228. https://doi.org/10.1109/ACCESS.2019.2954314

    Article  Google Scholar 

  95. Noh KJ, Park SJ, Lee S (2019) Scale-space approximated convolutional neural networks for retinal vessel segmentation. Comput Methods Programs Biomed 178:237–246. https://doi.org/10.1016/j.cmpb.2019.06.030

    Article  PubMed  Google Scholar 

  96. Farokhian F, Yang C, Demirel H, Wu S, Beheshti I (2017) Automatic parameters selection of Gabor filters with the imperialism competitive algorithm with application to retinal vessel segmentation. Biocybern Biomed Eng 37(1):246–254. https://doi.org/10.1016/j.bbe.2016.12.007

    Article  Google Scholar 

  97. Guo Y, Budak Ü, Vespa LJ, Khorasani E, Şengür A (2018) A retinal vessel detection approach using convolution neural network with reinforcement sample learning strategy. Meas J Int Meas Confed 125(March):586–591. https://doi.org/10.1016/j.measurement.2018.05.003

    Article  Google Scholar 

  98. Ju L et al (2021) Synergic adversarial label learning for grading retinal diseases via knowledge distillation and multi-task learning. IEEE J Biomed Health Inform 25(10):3709–3720. https://doi.org/10.1109/JBHI.2021.3052916

    Article  PubMed  Google Scholar 

  99. Li X, Jia M, Islam MT, Yu L, Xing L (2020) Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis. IEEE Trans Med Imaging 39(12):4023–4033. https://doi.org/10.1109/TMI.2020.3008871

    Article  PubMed  Google Scholar 

  100. Shankar K, Zhang Y, Liu Y, Wu L, Chen CH (2020) Hyperparameter tuning deep learning for diabetic retinopathy fundus image classification. IEEE Access 8:118164–118173. https://doi.org/10.1109/ACCESS.2020.3005152

    Article  Google Scholar 

  101. Luo Y, Pan J, Fan S, Du Z, Zhang G (2020) Retinal image classification by self-supervised fuzzy clustering network. IEEE Access 8:92352–92362. https://doi.org/10.1109/ACCESS.2020.2994047

    Article  Google Scholar 

  102. Prentašić P, Lončarić S (2016) Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput Methods Programs Biomed 137:281–292. https://doi.org/10.1016/j.cmpb.2016.09.018

    Article  PubMed  Google Scholar 

  103. Tan JH et al (2017) Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf Sci (NY) 420:66–76. https://doi.org/10.1016/j.ins.2017.08.050

    Article  Google Scholar 

  104. Lazar I, Hajdu A (2013) Retinal microaneurysm detection through local rotating cross-section profile analysis. IEEE Trans Med Imaging 32(2):400–407. https://doi.org/10.1109/TMI.2012.2228665

    Article  PubMed  Google Scholar 

  105. Dai L et al (2018) Clinical report guided retinal microaneurysm detection with multi-sieving deep learning. IEEE Trans Med Imaging 37(5):1149–1161. https://doi.org/10.1109/TMI.2018.2794988

    Article  PubMed  Google Scholar 

  106. Fraz MM, Badar M, Malik AW, Barman SA (2019) Computational methods for exudates detection and macular Edema estimation in retinal images: a survey. Arch Comput Methods Eng 26(4):1193–1220. https://doi.org/10.1007/s11831-018-9281-4

    Article  Google Scholar 

  107. Zhang X et al (2014) Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med Image Anal 18(7):1026–1043. https://doi.org/10.1016/j.media.2014.05.004

    Article  ADS  PubMed  Google Scholar 

  108. Van Grinsven MJJP, Van Ginneken B, Hoyng CB, Theelen T, Sánchez CI (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 35(5):1273–1284. https://doi.org/10.1109/TMI.2016.2526689

    Article  PubMed  Google Scholar 

  109. Math L, Fatima R (2021) Adaptive machine learning classification for diabetic retinopathy. Multimed Tools Appl 80(4):5173–5186. https://doi.org/10.1007/s11042-020-09793-7

    Article  Google Scholar 

  110. Li X et al (2021) Rotation-oriented collaborative self-supervised learning for retinal disease diagnosis. IEEE Trans Med Imaging 40(9):2284–2294. https://doi.org/10.1109/TMI.2021.3075244

    Article  PubMed  Google Scholar 

  111. Mahmoud MH, Alamery S, Fouad H, Altinawi A, Youssef AE (2021) An automatic detection system of diabetic retinopathy using a hybrid inductive machine learning algorithm. Pers Ubiquitous Comput. https://doi.org/10.1007/s00779-020-01519-8

    Article  Google Scholar 

  112. Bernardini M, Romeo L, Mancini A, Frontoni E (2021) A clinical decision support system to stratify the temporal risk of diabetic retinopathy. IEEE Access 9:151864–151872. https://doi.org/10.1109/ACCESS.2021.3127274

    Article  Google Scholar 

  113. Abdelsalam MM, Zahran MA (2021) A novel approach of diabetic retinopathy early detection based on multifractal geometry analysis for OCTA macular images using support vector machine. IEEE Access 9:22844–22858. https://doi.org/10.1109/ACCESS.2021.3054743

    Article  Google Scholar 

  114. Tavakoli M, Mehdizadeh A, Aghayan A, Shahri RP, Ellis T, Dehmeshki J (2021) Automated microaneurysms detection in retinal images using radon transform and supervised learning: application to mass screening of diabetic retinopathy. IEEE Access 9:67302–67314. https://doi.org/10.1109/ACCESS.2021.3074458

    Article  Google Scholar 

  115. Bilal A, Sun G, Li Y, Mazhar S, Khan AQ (2021) Diabetic retinopathy detection and classification using mixed models for a disease grading database. IEEE Access 9:23544–23553. https://doi.org/10.1109/ACCESS.2021.3056186

    Article  Google Scholar 

  116. Chakraborty S, Jana GC, Kumari D, Swetapadma A (2020) An improved method using supervised learning technique for diabetic retinopathy detection. Int J Inf Technol 12(2):473–477. https://doi.org/10.1007/s41870-019-00318-6

    Article  Google Scholar 

  117. Somasundaram SK, Alli P (2017) A machine learning ensemble classifier for early prediction of diabetic retinopathy. J Med Syst. https://doi.org/10.1007/s10916-017-0853-x

    Article  Google Scholar 

  118. Mansour RF (2017) Evolutionary computing enriched computer-aided diagnosis system for diabetic retinopathy: a survey. IEEE Rev Biomed Eng 10:334–349. https://doi.org/10.1109/RBME.2017.2705064

    Article  PubMed  Google Scholar 

  119. Bellemo V et al (2019) Artificial intelligence screening for diabetic retinopathy: the real-world emerging application. Curr Diabetes Rep. https://doi.org/10.1007/s11892-019-1189-3

    Article  Google Scholar 

  120. Li X, Hu X, Yu L, Zhu L, Fu CW, Heng PA (2020) CANet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans Med Imaging 39(5):1483–1493. https://doi.org/10.1109/TMI.2019.2951844

    Article  CAS  PubMed  Google Scholar 

  121. Saeed F, Hussain M, Aboalsamh HA (2021) Automatic Diabetic retinopathy diagnosis using adaptive fine-tuned convolutional neural network. IEEE Access 9:41344–41359. https://doi.org/10.1109/ACCESS.2021.3065273

    Article  Google Scholar 

  122. Majumder S, Kehtarnavaz N (2021) Multitasking deep learning model for detection of five stages of diabetic retinopathy. IEEE Access 9:123220–123230. https://doi.org/10.1109/ACCESS.2021.3109240

    Article  Google Scholar 

  123. Chen W, Yang B, Li J, Wang J (2020) An approach to detecting diabetic retinopathy based on integrated shallow convolutional neural networks. IEEE Access 8:178552–178562. https://doi.org/10.1109/ACCESS.2020.3027794

    Article  Google Scholar 

  124. Qiao L, Zhu Y, Zhou H (2020) Diabetic retinopathy detection using prognosis of microaneurysm and early diagnosis system for non-proliferative diabetic retinopathy based on deep learning algorithms. IEEE Access 8:104292–104302. https://doi.org/10.1109/ACCESS.2020.2993937

    Article  Google Scholar 

  125. Al-Antary MT, Arafa Y (2021) Multi-scale attention network for diabetic retinopathy classification. IEEE Access 9:54190–54200. https://doi.org/10.1109/ACCESS.2021.3070685

    Article  Google Scholar 

  126. Wang S et al (2017) Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Trans Biomed Eng 64(5):990–1002. https://doi.org/10.1109/TBME.2016.2585344

    Article  ADS  PubMed  Google Scholar 

  127. Pires R, Avila S, Jelinek HF, Wainer J, Valle E, Rocha A (2017) Beyond lesion-based diabetic retinopathy: a direct approach for referral. IEEE J Biomed Heal Inform 21(1):193–200. https://doi.org/10.1109/JBHI.2015.2498104

    Article  Google Scholar 

  128. Cao W, Czarnek N, Shan J, Li L (2018) Microaneurysm detection using principal component analysis and machine learning methods. IEEE Trans Nanobiosci 17(3):191–198. https://doi.org/10.1109/TNB.2018.2840084

    Article  Google Scholar 

  129. Adem K (2018) Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks. Expert Syst Appl 114:289–295. https://doi.org/10.1016/j.eswa.2018.07.053

    Article  Google Scholar 

  130. Liu YP, Li Z, Xu C, Li J, Liang R (2019) Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network. Artif Intell Med 99:101694. https://doi.org/10.1016/j.artmed.2019.07.002

    Article  PubMed  Google Scholar 

  131. Wang J, Bai Y, Xia B (2020) Simultaneous diagnosis of severity and features of diabetic retinopathy in fundus photography using deep learning. IEEE J Biomed Heal Inform 24(12):3397–3407. https://doi.org/10.1109/JBHI.2020.3012547

    Article  Google Scholar 

  132. He Y et al (2020) Segmenting diabetic retinopathy lesions in multispectral images using low-dimensional spatial-spectral matrix representation. IEEE J Biomed Heal Inform 24(2):493–502. https://doi.org/10.1109/JBHI.2019.2912668

    Article  Google Scholar 

  133. Morales S, Engan K, Naranjo V, Colomer A (2015) Retinal disease screening through local binary patterns. IEEE J Biomed Heal Inform 21(1):184–192

  134. Khansari MM et al (2020) Automated deformation-based analysis of 3D optical coherence tomography in diabetic retinopathy. IEEE Trans Med Imaging 39(1):236–245. https://doi.org/10.1109/TMI.2019.2924452

    Article  PubMed  Google Scholar 

  135. Hua CH et al (2021) Convolutional network with twofold feature augmentation for diabetic retinopathy recognition from multi-modal images. IEEE J Biomed Heal Inform 25(7):2686–2697. https://doi.org/10.1109/JBHI.2020.3041848

    Article  Google Scholar 

  136. Zang P et al (2021) DcardNet: diabetic retinopathy classification at multiple levels based on structural and angiographic optical coherence tomography. IEEE Trans Biomed Eng 68(6):1859–1870. https://doi.org/10.1109/TBME.2020.3027231

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  137. Gadekallu TR, Khare N, Bhattacharya S, Singh S, Maddikunta PKR, Srivastava G (2020) Deep neural networks to predict diabetic retinopathy. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-01963-7

    Article  Google Scholar 

  138. George Y, Antony BJ, Ishikawa H, Wollstein G, Schuman JS, Garnavi R (2020) Attention-guided 3D-CNN framework for glaucoma detection and structural-functional association using volumetric images. IEEE J Biomed Heal Inform 24(12):3421–3430. https://doi.org/10.1109/JBHI.2020.3001019

    Article  Google Scholar 

  139. Song WT, Lai IC, Su YZ (2021) A statistical robust glaucoma detection framework combining retinex, CNN, and DOE using fundus images. IEEE Access 9:103772–103783. https://doi.org/10.1109/access.2021.3098032

    Article  Google Scholar 

  140. Parashar D (2020) Using flexible analytic wavelet transform. 20(21):12885–12894

  141. Ali R et al (2021) Optic disk and cup segmentation through fuzzy broad learning system for glaucoma screening. IEEE Trans Ind Inform 17(4):2476–2487. https://doi.org/10.1109/TII.2020.3000204

    Article  ADS  MathSciNet  Google Scholar 

  142. Devecioglu OC, Malik J, Ince T, Kiranyaz S, Atalay E, Gabbouj M (2021) Real-time glaucoma detection from digital fundus images using self-ONNs. IEEE Access 9:140031–140041. https://doi.org/10.1109/ACCESS.2021.3118102

    Article  Google Scholar 

  143. Diaz-Pinto A, Colomer A, Naranjo V, Morales S, Xu Y, Frangi AF (2019) Retinal image synthesis and semi-supervised learning for glaucoma assessment. IEEE Trans Med Imaging 38(9):2211–2218. https://doi.org/10.1109/TMI.2019.2903434

    Article  PubMed  Google Scholar 

  144. Afolabi OJ, Mabuza-Hocquet GP, Nelwamondo FV, Paul BS (2021) The use of U-net lite and extreme gradient boost (XGB) for glaucoma detection. IEEE Access 9:47411–47424. https://doi.org/10.1109/ACCESS.2021.3068204

    Article  Google Scholar 

  145. Islam MT, Mashfu ST, Faisal A, Siam SC, Naheen IT, Khan R (2022) Deep learning-based glaucoma detection with cropped optic cup and disc and blood vessel segmentation. IEEE Access 10:2828–2841. https://doi.org/10.1109/ACCESS.2021.3139160

    Article  Google Scholar 

  146. Alyoubi WL, Shalash WM, Abulkhair MF (2020) Diabetic retinopathy detection through deep learning techniques: a review. Inform Med Unlocked 20:100377. https://doi.org/10.1016/j.imu.2020.100377

    Article  Google Scholar 

  147. Sarhan MH et al (2020) Machine learning techniques for ophthalmic data processing: a review. IEEE J Biomed Heal Inform 24(12):3338–3350. https://doi.org/10.1109/JBHI.2020.3012134

    Article  Google Scholar 

  148. Luo X, Li J, Chen M, Yang X, Li X (2021) Ophthalmic disease detection via deep learning with a novel mixture loss function. IEEE J Biomed Heal Inform 25(9):3332–3339. https://doi.org/10.1109/JBHI.2021.3083605

    Article  Google Scholar 

  149. Mvoulana A, Kachouri R, Akil M (2019) Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Comput Med Imaging Graph 77:101643. https://doi.org/10.1016/j.compmedimag.2019.101643

    Article  PubMed  Google Scholar 

  150. Gour N, Khanna P (2020) Automated glaucoma detection using GIST and pyramid histogram of oriented gradients (PHOG) descriptors. Pattern Recogn Lett 137:3–11. https://doi.org/10.1016/j.patrec.2019.04.004

    Article  ADS  Google Scholar 

  151. Mitra A, Banerjee PS, Roy S, Roy S, Setua SK (2018) The region of interest localization for glaucoma analysis from retinal fundus image using deep learning. Comput Methods Programs Biomed 165:25–35. https://doi.org/10.1016/j.cmpb.2018.08.003

    Article  PubMed  Google Scholar 

  152. Zilly J, Buhmann JM, Mahapatra D (2017) Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph 55:28–41. https://doi.org/10.1016/j.compmedimag.2016.07.012

    Article  PubMed  Google Scholar 

  153. Thakur N, Juneja M (2020) Classification of glaucoma using hybrid features with machine learning approaches. Biomed Signal Process Control 62:102137. https://doi.org/10.1016/j.bspc.2020.102137

    Article  Google Scholar 

  154. Shinde R (2021) Glaucoma detection in retinal fundus images using U-Net and supervised machine learning algorithms. Intell Med 5:100038. https://doi.org/10.1016/j.ibmed.2021.100038

    Article  Google Scholar 

  155. Thakoor KA, Koorathota SC, Hood DC, Sajda P (2021) Robust and interpretable convolutional neural networks to detect glaucoma in optical coherence tomography images. IEEE Trans Biomed Eng 68(8):2456–2466. https://doi.org/10.1109/TBME.2020.3043215

    Article  PubMed  PubMed Central  Google Scholar 

  156. Fu H, Cheng J, Xu Y, Zhang C, Wong DWK, Liu J, Cao X (2018) Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans Med Imaging 37(11):2493–2501

    Article  PubMed  Google Scholar 

  157. Abdullah F et al (2021) A review on glaucoma disease detection using computerized techniques. IEEE Access 9:37311–37333. https://doi.org/10.1109/ACCESS.2021.3061451

    Article  Google Scholar 

  158. Hagiwara Y et al (2018) Computer-aided diagnosis of glaucoma using fundus images: a review. Comput Methods Programs Biomed 165:1–12. https://doi.org/10.1016/j.cmpb.2018.07.012

    Article  PubMed  Google Scholar 

  159. Thakur N, Juneja M (2018) Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomed Signal Process Control 42:162–189. https://doi.org/10.1016/j.bspc.2018.01.014

    Article  Google Scholar 

  160. Martins J, Cardoso JS, Soares F (2020) Offline computer-aided diagnosis for Glaucoma detection using fundus images targeted at mobile devices. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2020.105341

    Article  PubMed  Google Scholar 

  161. Chen B et al (2018) Diverse lesion detection from retinal images by subspace learning over normal samples. Neurocomputing 297:59–70. https://doi.org/10.1016/j.neucom.2018.03.023

    Article  Google Scholar 

  162. Rocha A, Carvalho T, Jelinek HF, Goldenstein S, Wainer J (2012) Points of interest and visual dictionaries for automatic retinal lesion detection. IEEE Trans Biomed Eng 59(8):2244–2253. https://doi.org/10.1109/TBME.2012.2201717

    Article  CAS  PubMed  Google Scholar 

  163. Usman-Akram M, Khalid S, Tariq A, Khan SA, Azam F (2014) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45(1):161–171. https://doi.org/10.1016/j.compbiomed.2013.11.014

    Article  CAS  PubMed  Google Scholar 

  164. Kar SS, Maity SP (2018) Automatic detection of retinal lesions for screening of diabetic retinopathy. IEEE Trans Biomed Eng 65(3):608–618. https://doi.org/10.1109/TBME.2017.2707578

    Article  PubMed  Google Scholar 

  165. Seoud L, Hurtut T, Chelbi J, Cheriet F, Langlois JMP (2016) Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Med Imaging 35(4):1116–1126. https://doi.org/10.1109/TMI.2015.2509785

    Article  PubMed  Google Scholar 

  166. Novosel J, Vermeer KA, De Jong JH, Wang Z, Van Vliet LJ (2017) Joint segmentation of retinal layers and focal lesions in 3-D OCT data of topologically disrupted retinas. IEEE Trans Med Imaging 36(6):1276–1286. https://doi.org/10.1109/TMI.2017.2666045

    Article  PubMed  Google Scholar 

  167. Adal KM, Van Etten PG, Martinez JP, Rouwen KW, Vermeer KA, Van Vliet LJ (2018) An automated system for the detection and classification of retinal changes due to red lesions in longitudinal fundus images. IEEE Trans Biomed Eng 65(6):1382–1390. https://doi.org/10.1109/TBME.2017.2752701

    Article  PubMed  Google Scholar 

  168. Wang R, Chen B, Meng D, Wang L (2019) Weakly supervised lesion detection from fundus images. IEEE Trans Med Imaging 38(6):1501–1512. https://doi.org/10.1109/TMI.2018.2885376

    Article  PubMed  Google Scholar 

  169. Playout C, Duval R, Cheriet F (2019) A novel weakly supervised multitask architecture for retinal lesions segmentation on fundus images. IEEE Trans Med Imaging 38(10):2434–2444. https://doi.org/10.1109/TMI.2019.2906319

    Article  PubMed  Google Scholar 

  170. Gonzalez-Gonzalo C, Liefers B, van Ginneken B, Sanchez CI (2020) Iterative augmentation of visual evidence for weakly-supervised lesion localization in deep interpretability frameworks: application to color fundus images. IEEE Trans Med Imaging 39(11):3499–3511. https://doi.org/10.1109/TMI.2020.2994463

    Article  PubMed  Google Scholar 

  171. Sidibé D, Sadek I, Mériaudeau F (2015) Discrimination of retinal images containing bright lesions using sparse coded features and SVM. Comput Biol Med 62:175–184. https://doi.org/10.1016/j.compbiomed.2015.04.026

    Article  PubMed  Google Scholar 

  172. Hassan B et al (2021) Deep learning based joint segmentation and characterization of multi-class retinal fluid lesions on OCT scans for clinical use in anti-VEGF therapy. Comput Biol Med 136:104727. https://doi.org/10.1016/j.compbiomed.2021.104727

    Article  PubMed  Google Scholar 

  173. Hassan B, Qin S, Hassan T, Akram MU, Ahmed R, Werghi N (2021) CDC-Net: cascaded decoupled convolutional network for lesion-assisted detection and grading of retinopathy using optical coherence tomography (OCT) scans. Biomed Signal Process Control 70:103030. https://doi.org/10.1016/j.bspc.2021.103030

    Article  Google Scholar 

  174. Sugeno A, Ishikawa Y, Ohshima T, Muramatsu R (2021) Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning. Comput Biol Med 137:104795. https://doi.org/10.1016/j.compbiomed.2021.104795

    Article  PubMed  Google Scholar 

  175. Fang L, Wang C, Li S, Rabbani H, Chen X, Liu Z (2019) Attention to lesion: lesion-aware convolutional neural network for retinal optical coherence tomography image classification. IEEE Trans Med Imaging 38(8):1959–1970. https://doi.org/10.1109/TMI.2019.2898414

    Article  PubMed  Google Scholar 

  176. Biyani RS, Patre BM (2018) Algorithms for red lesion detection in diabetic retinopathy: a review. Biomed Pharmacother 107(May):681–688. https://doi.org/10.1016/j.biopha.2018.07.175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Bhandari.

Ethics declarations

Conflict of Interest

There is not conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preity, Bhandari, A.K. & Shahnawazuddin, S. Automated Computationally Intelligent Methods for Ocular Vessel Segmentation and Disease Detection: A Review. Arch Computat Methods Eng 31, 701–724 (2024). https://doi.org/10.1007/s11831-023-09998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09998-7

Navigation