Skip to main content
Log in

A Hybrid Fusion Method Combining Spatial Image Filtering with Parallel Channel Network for Retinal Vessel Segmentation

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Retinography is a frequently used imaging method that aids in the clinical diagnosis of eye disorders. Low contrast and being exposed to noise are the primary factors in degraded retinal fundus images. These factors make it challenging for medical experts to diagnose and classify diseases in retinal images. This manuscript proposes a hybrid fusion approach for vascular tree segmentation in color fundus images. We propose to use a fusion model that combines supervised deep convolutional neural networks with unsupervised approaches. The training fundus images were preprocessed in an unsupervised way to increase the success of the deep U-Net architecture and fed into the network as parallel channels. Preprocessing steps include the following stages: grayscale conversion, median filtering, CLAHE, mathematical morphology operations, Coye filtering, connected component analysis, and data augmentation. The proposed approach was tested on publicly accessible DRIVE and HRF datasets. Sensitivity, specificity, accuracy, and F1-score measures are compared on high and low-resolution datasets. In summary, results reveal that the performance of the parallel channel-based deep approach is higher than the baseline deep model and achieved state-of-the-art results in the literature, especially on the HRF dataset. Besides, the fusion of the predictions of only the unsupervised image processing-based models achieved the best accuracy among unsupervised works in the literature on the DRIVE dataset. Moreover, the proposed unsupervised preprocessing-based approach does not add a significant computational burden on the deep learning model training. Additionally, the proposed hybrid method has noticeably increased the sensitivity rate on both datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The retinal fundus image data used in this research are available at https://drive.grand-challenge.org/ and https://www5.cs.fau.de/research/data/fundus-images/.

Notes

  1. MATLAB Central File Exchange (2022). Novel Retinal Vessel Segmentation Algorithm: Fundus Images [online]. Website https://www.mathworks.com/matlabcentral/fileexchange/50839-novel-retinal-vessel-segmentation-algorithm-fundus-images [accessed 05 May 2022].

References

  1. Sahu, S.; Singh, A.K.; Ghrera, S.; Elhoseny, M.: An approach for de-noising and contrast enhancement of retinal fundus image using clahe. Optics & Laser Technol. 110, 87–98 (2019)

    Article  Google Scholar 

  2. dos Santos, J.C.M.; et al.: Fundus image quality enhancement for blood vessel detection via a neural network using clahe and wiener filter. Res. Biomed. Eng. 36(2), 107–119 (2020)

    Article  Google Scholar 

  3. Li, T.; et al.: Applications of deep learning in fundus images: a review. Med. Image Anal. 69, 101971 (2021)

    Article  Google Scholar 

  4. Akbar, S.; et al.: Automated techniques for blood vessels segmentation through fundus retinal images: a review. Microsc. Res. Techn. 82(2), 153–170 (2019)

    Article  Google Scholar 

  5. Bataineh, B.; Almotairi, K.H.: Enhancement method for color retinal fundus images based on structural details and illumination improvements. Arab J. Sci. Eng. 46(9), 8121–8135 (2021)

    Article  Google Scholar 

  6. Zhou, M.; Jin, K.; Wang, S.; Ye, J.; Qian, D.: Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Trans. Biomed. Eng. 65(3), 521–527 (2017)

    Article  Google Scholar 

  7. Lidong, H.; Wei, Z.; Jun, W.; Zebin, S.: Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement. IET Image Process. 9(10), 908–915 (2015)

    Article  Google Scholar 

  8. Campos, G.F.C.; et al.: Machine learning hyperparameter selection for contrast limited adaptive histogram equalization. EURASIP J. Image Video Process. 2019(1), 1–18 (2019)

    Article  Google Scholar 

  9. Aurangzeb, K.; et al.: Contrast enhancement of fundus images by employing modified pso for improving the performance of deep learning models. IEEE Access 9, 47930–47945 (2021)

    Article  Google Scholar 

  10. Datta, N.S.; Dutta, H.S.; De, M.; Mondal, S.: An effective approach: image quality enhancement for microaneurysms detection of non-dilated retinal fundus image. Procedia Technol. 10, 731–737 (2013)

    Article  Google Scholar 

  11. Fraz, M.M.; et al.: An approach to localize the retinal blood vessels using bit planes and centerline detection. Comp. Method Progr. Biomed. 108(2), 600–616 (2012)

    Article  Google Scholar 

  12. Zhao, Y.Q.; Wang, X.H.; Wang, X.F.; Shih, F.Y.: Retinal vessels segmentation based on level set and region growing. Patt. Recognit. 47(7), 2437–2446 (2014)

    Article  Google Scholar 

  13. Azzopardi, G.; Strisciuglio, N.; Vento, M.; Petkov, N.: Trainable cosfire filters for vessel delineation with application to retinal images. Med. Image Anal. 19(1), 46–57 (2015)

    Article  Google Scholar 

  14. Hassanien, A.E.; Emary, E.; Zawbaa, H.M.: Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and pattern search. J. Visual Commun. Image Represent. 31, 186–196 (2015)

    Article  Google Scholar 

  15. Oliveira, W.S.; Teixeira, J.V.; Ren, T.I.; Cavalcanti, G.D.; Sijbers, J.: Unsupervised retinal vessel segmentation using combined filters. PloS One 11(2), e0149943 (2016)

    Article  Google Scholar 

  16. Zhang, J.; et al.: Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans. Med. Imag. 35(12), 2631–2644 (2016)

    Article  Google Scholar 

  17. Wang, W.; Zhang, J.; Wu, W.; Zhou, S.: An automatic approach for retinal vessel segmentation by multi-scale morphology and seed point tracking. J. Med. Imag. Health Info. 8(2), 262–274 (2018)

    Google Scholar 

  18. Alhussein, M.; Aurangzeb, K.; Haider, S.I.: An unsupervised retinal vessel segmentation using hessian and intensity based approach. IEEE Access 8, 165056–165070 (2020)

    Article  Google Scholar 

  19. Saroj, S.K.; Kumar, R.; Singh, N.P.: Fréchet pdf based matched filter approach for retinal blood vessels segmentation. Comp. Method Progr. Biomed. 194, 105490 (2020)

    Article  Google Scholar 

  20. Ding, J.; Zhang, Z.; Tang, J.; Guo, F.: A multichannel deep neural network for retina vessel segmentation via a fusion mechanism. Front Bioeng. Biotech. (2021). https://doi.org/10.3389/fbioe.2021.697915

    Article  Google Scholar 

  21. Ding, H.; Cui, X.; Chen, L.; Zhao, K.: Mru-net: a u-shaped network for retinal vessel segmentation. Appl. Sci. 10(19), 6823 (2020)

    Article  Google Scholar 

  22. Yan, Z.; Yang, X.; Cheng, K.-T.: Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans. Biomed. Eng. 65(9), 1912–1923 (2018)

    Article  Google Scholar 

  23. Wu, Y.; Xia, Y.; Song, Y.; Zhang, Y.; Cai, W.: Nfn+: a novel network followed network for retinal vessel segmentation. Neural Netw. 126, 153–162 (2020)

    Article  Google Scholar 

  24. Wang, K.; Zhang, X.; Huang, S.; Wang, Q.; Chen, F.: Ctf-net: Retinal vessel segmentation via deep coarse-to-fine supervision network, 2020 IEEE 17th International symposium on biomedical imaging (ISBI), IEEE, 1237–1241 (2020)

  25. Wu, Y.; et al.: Vessel-net: retinal vessel segmentation under multi-path supervision, International conference on medical image computing and computer-assisted intervention (MICCAI), Springer, 264–272 (2019)

  26. Wang, B.; Qiu, S.; He, H.: Dual encoding u-net for retinal vessel segmentation, International conference on medical image computing and computer-assisted intervention (MICCAI), Springer, 84–92 (2019)

  27. Ma, W.; et al.: Multi-task neural networks with spatial activation for retinal vessel segmentation and artery/vein classification, International conference on medical image computing and computer-assisted intervention (MICCAI), Springer, 769–778 (2019)

  28. Alom, M.Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K.: Recurrent residual u-net for medical image segmentation. J. Med. Imag. 6(1), 014006 (2019)

    Article  Google Scholar 

  29. Mishra, S., Chen, D. Z. & Hu, X. S.: A data-aware deep supervised method for retinal vessel segmentation, 2020 IEEE 17th International symposium on biomedical imaging (ISBI), IEEE, 1254–1257 (2020)

  30. Su, Y.; Cheng, J.; Cao, G.; Liu, H.: How to design a deep neural network for retinal vessel segmentation: an empirical study. Biomed. Sign. Process. Control 77, 103761 (2022)

    Article  Google Scholar 

  31. Dong, F.; et al.: Craunet: a cascaded residual attention u-net for retinal vessel segmentation. Comp. Biol. Med. (2022). https://doi.org/10.1016/j.compbiomed.2022.105651

    Article  Google Scholar 

  32. Li, D.; Peng, L.; Peng, S.; Xiao, H.; Zhang, Y.: Retinal vessel segmentation by using afnet. Visual Comp. (2022). https://doi.org/10.1007/s00371-022-02456-8

    Article  Google Scholar 

  33. Tang, S.; Yu, F.: Construction and verification of retinal vessel segmentation algorithm for color fundus image under bp neural network model. J. Supercomp. 77(4), 3870–3884 (2021)

    Article  Google Scholar 

  34. Yan, Z.; Yang, X.; Cheng, K.-T.: A three-stage deep learning model for accurate retinal vessel segmentation. IEEE J. Biomed. Health Info. 23(4), 1427–1436 (2019)

    Article  Google Scholar 

  35. Ronneberger, O.; Fischer, P.; Brox, T.: U-net: Convolutional networks for biomedical image segmentation, International conference on medical image computing and computer-assisted intervention (MICCAI), Springer, 234–241 (2015)

  36. Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)

    Article  Google Scholar 

  37. Odstrcilik, J.; et al.: Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process. 7(4), 373–383 (2013)

    Article  MathSciNet  Google Scholar 

  38. Tharwat, A.: Classification assessment methods. Appl. Comp. Info. 17(1), 168–192 (2020)

    Google Scholar 

  39. Budai, A.; Bock, R.; Maier, A.; Hornegger, J.; Michelson, G.: Robust vessel segmentation in fundus images. Int. J. Biomed. Imag. (2013). https://doi.org/10.1155/2013/154860

    Article  Google Scholar 

  40. Aguirre-Ramos, H.; Avina-Cervantes, J.G.; Cruz-Aceves, I.; Ruiz-Pinales, J.; Ledesma, S.: Blood vessel segmentation in retinal fundus images using gabor filters, fractional derivatives, and expectation maximization. Appl. Math. Comp. 339, 568–587 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhao, Y.; et al.: Automatic 2-d/3-d vessel enhancement in multiple modality images using a weighted symmetry filter. IEEE Trans. Med. Imag. 37(2), 438–450 (2018)

    Article  Google Scholar 

  42. Jin, Q.; et al.: Dunet: a deformable network for retinal vessel segmentation. Knowl.-Based Sys. 178, 149–162 (2019)

    Article  Google Scholar 

  43. Guo, C.; et al.: Sa-unet: spatial attention u-net for retinal vessel segmentation, 1236–1242, IEEE, (2021)

  44. Zhou, Y.; et al.: A refined equilibrium generative adversarial network for retinal vessel segmentation. Neurocomputing 437, 118–130 (2021)

    Article  Google Scholar 

  45. Panda, R.; Puhan, N.; Panda, G.: New binary hausdorff symmetry measure based seeded region growing for retinal vessel segmentation. Biocybern. Biomed. Eng. 36(1), 119–129 (2016)

    Article  Google Scholar 

  46. Orlando, J.I.; Prokofyeva, E.; Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64(1), 16–27 (2016)

    Article  Google Scholar 

  47. Soomro, T.A.; et al.: Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Sys. Appl. 134, 36–52 (2019)

    Article  Google Scholar 

  48. Wang, X.; Jiang, X.: Retinal vessel segmentation by a divide-and-conquer funnel-structured classification framework. Signal Process. 165, 104–114 (2019)

    Article  Google Scholar 

  49. Islam, M.; et al.: Artificial intelligence in ophthalmology: a meta-analysis of deep learning models for retinal vessels segmentation. J. Clin. Med. 9(4), 1018 (2020)

    Article  Google Scholar 

  50. Zhao, H.; Li, H.; Cheng, L.: Improving retinal vessel segmentation with joint local loss by matting. Patt. Recognit. 98, 107068 (2020)

    Article  Google Scholar 

  51. Cherukuri, V.; Bg, V.K.; Bala, R.; Monga, V.: Deep retinal image segmentation with regularization under geometric priors. IEEE Trans. Image Process. 29, 2552–2567 (2020)

    Article  MATH  Google Scholar 

  52. Jena, R.; Singla, S.; Batmanghelich, K.: Self-supervised vessel enhancement using flow-based consistencies, Springer, 242–251 ( 2021)

  53. Guo, S.: Dpn: detail-preserving network with high resolution representation for efficient segmentation of retinal vessels. J. Ambient Intell. Human Comput. (2021). https://doi.org/10.1007/s12652-021-03422-3

  54. Lim, G.; Cheng, Y.; Hsu, W.; Lee, M. L.: Integrated optic disc and cup segmentation with deep learning, IEEE, 162–169 (2015)

  55. Salvi, M.; Acharya, U.R.; Molinari, F.; Meiburger, K.M.: The impact of pre-and post-image processing techniques on deep learning frameworks: a comprehensive review for digital pathology image analysis. Comp. Biol. Med. 128, 104129 (2020)

Download references

Acknowledgements

Ilkay Oksuz has been benefiting from the 2232 International Fellowship for Outstanding Researchers Program of TUBITAK (Project No.: 118C353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezer Ulukaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakut, C., Oksuz, I. & Ulukaya, S. A Hybrid Fusion Method Combining Spatial Image Filtering with Parallel Channel Network for Retinal Vessel Segmentation. Arab J Sci Eng 48, 6149–6162 (2023). https://doi.org/10.1007/s13369-022-07311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07311-5

Keywords

Navigation