Skip to main content
Log in

Aphid induction of phytohormones in Medicago truncatula is dependent upon time post-infestation, aphid density and the genotypes of both plant and insect

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

This study examined the induction of the defence-related hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA) and the phytoalexin medicarpin in Medicago truncatula when challenged by the pea aphid Acyrthosiphon pisum. There was some induction of hormones in the compatible interaction between A. pisum clone N116 and M. truncatula cultivar DZA315, whereas JA, SA and medicarpin exhibited more significant increases in foliage concentration during the incompatible interaction between A. pisum clone PS01 and M. truncatula cultivar Jemalong A17. Foliar concentration of JA, SA and medicarpin exhibited a positive relationship with aphid density after 3-day feeding, whereas ABA was not affected by the presence of aphids. When aphids were restricted to a single leaf using plastic tubes, JA, SA and medicarpin displayed strong local induction, whereas there were no significant systemic increases in uninfested leaves. Medicarpin and SA appeared to increase with duration of aphid feeding, whereas JA showed a more transient increase in concentration 24 h after challenge commenced. Results suggest that increases in JA, SA and medicarpin are associated with M. truncatula resistance to particular clones of A. pisum. The variation in concentration of the defence-related compounds recorded with regard to aphid density, duration of challenge, genotypes of plant and aphids, and between locally challenged and distant leaves reinforces the need for consideration of these experimental factors when generalizing about the plant defence processes that occur during aphid–plant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    Article  CAS  Google Scholar 

  • Berger S (2002) Jasmonate-related mutants of Arabidopsis as tools for studying stress signaling. Planta 214:497–504

    Article  CAS  PubMed  Google Scholar 

  • Bostock RM (1999) Signal conflicts and synergies in induced resistance to multiple attackers. Physiol Mol Plant Pathol 55:99–109

    Article  Google Scholar 

  • Bostock RM, Karban R, Thaler JS, Weyman PD, Gilchrist D (2001) Signal interactions in induced resistance to pathogens and insect herbivores. Eur J Plant Pathol 107:103–111

    Article  CAS  Google Scholar 

  • Brunissen L, Vincent C, Le Roux V, Giordanengo P (2010) Effects of systemic potato response to wounding and jasmonate on the aphid Macrosiphum euphorbiae (Sternorryncha: Aphididae). J Appl Entomol 134:562–571

    CAS  Google Scholar 

  • Chen M-S (2008) Inducible direct plant defense against insect herbivores: a review. Insect Sci 15:101–114

    Article  Google Scholar 

  • Cruickshank IAM, Spencer K, Mandryk M (1979) Nitrogen nutrition and the net accumulation of medicarpan in infection-droplets on excised leaves of white clover. Physiol Plant Pathol 14:71–76

    Article  CAS  Google Scholar 

  • de Ilarduya OM, Xie QG, Kaloshian I (2003) Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Mol Plant Microbe Interact 16:699–708

    Article  Google Scholar 

  • de Vos M, Jander G (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Environ 32:1548–1560

    Article  PubMed  Google Scholar 

  • de Vos M, van Oosted VR, van Poecke RMP, van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux J-P, van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18:923–937

    Article  PubMed  Google Scholar 

  • de Vos M, Kim JH, Jander G (2007) Biochemistry and molecular biology of Arabidopsis–aphid interactions. BioEssays 29:871–883

    Article  PubMed  Google Scholar 

  • Divol F, Vilaine F, Thibivilliers S, Amselem J, Palauqui J-C, Kusiak K, Dinant S (2005) Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Mol Biol 57:517–540

    Article  CAS  PubMed  Google Scholar 

  • Donovan MP, Nabity PD, DeLucia EH (2013) Salicylic acid-mediated reductions in yield in Nicotiana attenuate challenged by aphid herbivory. Arthropod Plant Interact 7:45–52

    Article  Google Scholar 

  • Dugravot S, Brunissen L, Letocart E, Tjallingii WF, Vincent C, Giordanengo P, Cherqui A (2007) Local and systemic responses induced by aphids on Solanum tuberosum plants. Entomol Exp Appl 123:271–277

    Article  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferrari J, Via S, Godfray HCJ (2008) Population differentiation and genetic variation in performance on eight hosts in the pea aphid complex. Evolution 62:2508–2524

    Article  PubMed  Google Scholar 

  • Ferry N, Stavroulakis S, Guan W, Davison GM, Bell HA, Weaver RJ, Down RE, Gatehouse JA, Gatehouse AMR (2011) Molecular interactions between wheat and cereal aphid (Sitobion avenae): analysis of changes to the wheat proteome. Proteomics 11:1985–2002

    Article  CAS  PubMed  Google Scholar 

  • Forcat S, Bennett MH, Mansfield JW, Grant MR (2008) A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress. Plant Methods 4:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Gao L-L, Anderson JP, Klingler JP, Nair RM, Edwards OR, Singh KB (2007) Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Mol Plant Microbe Interact 20:82–93

    Article  CAS  PubMed  Google Scholar 

  • Gao L-L, Klingler JP, Anderson JP, Edwards OR, Singh KB (2008) Characterization of pea aphid resistance in Medicago truncatula. Plant Physiol 146:96–109

    Article  Google Scholar 

  • Guo S, Kamphuis LG, Gao L, Edwards OR, Singh KB (2009) Two independent resistance genes in the Medicago truncatula cultivar jester confer resistance to two different aphid species of the genus Acyrthosiphon. Plant Signal Behav 4:328–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo SM, Kamphuis LG, Gao LL, Klingler JP, Lichtenzveig J, Edwards O, Singh KB (2012) Identification of distinct quantitative trait loci associated with defence against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula. J Exp Bot 63:3913–3922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo H, Sun Y, Li Y, Liu X, Wang P, Zhu-Salzman K, Ge F (2014) Elevated CO2 alters the feeding behaviour of the pea aphid by modifying the physical and chemical resistance of Medicago truncatula. Plant Cell Environ 37:2158–2168

    Article  CAS  PubMed  Google Scholar 

  • Hebert SL, Jia L, Goggin FL (2007) Quantitative differences in aphid virulence and foliar symptom development on tomato plants carrying the Mi resistance gene. Environ Entomol 36:458–467

    Article  PubMed  Google Scholar 

  • Hodge S, Powell G, Thompson GA (2005) Application of DL-β-aminobutyric acid (BABA) as a root drench to legumes inhibits the growth and reproduction of the pea aphid Acyrthosiphon pisum Harris. Bull Entomol Res 95:449–455

    CAS  PubMed  Google Scholar 

  • Hodge S, Ward JL, Beale MH, Bennett M, Mansfield JW, Powell G (2013) Aphid-induced accumulation of trehalose in Arabidopsis thaliana is systemic and dependent upon aphid density. Planta 237:1057–1064

    Article  CAS  PubMed  Google Scholar 

  • Jacobo-Velázquez DA, González-Agüero M, Cisneros-Zevallos L (2015) Cross-talk between signaling pathways: the link between plant secondary metabolite production and wounding stress response. Sci Rep 5:8608. doi:10.1038/srep08608

    Article  PubMed  Google Scholar 

  • Jasinksi M, Kachlicki P, Rodziewicz M, Stobiecki M (2009) Changes in the profile of flavonoid accumulation in Medicago truncatula leaves during infection with fungal pathogen Phoma medicaginis. Plant Physiol Biochem 47:847–853

    Article  Google Scholar 

  • Kamphuis LG, Gao L-L, Singh KB (2012) Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula. BMC Plant Biol 12:101

    Article  PubMed Central  PubMed  Google Scholar 

  • Kamphuis LG, Lichtenzveig J, Peng K, Guo S-M, Klingler JP, Siddique KHM, Gao L-L, Singh KB (2013) Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifoli) in Medicago truncatula. Exp Bot 64:5157–5172

    Article  CAS  Google Scholar 

  • Kanvil S, Powell G, Turnbull C (2014) Pea aphid biotype performance on diverse Medicago host genotypes indicates highly specific virulence and resistance functions. Bull Entomol Res 104:689–701

    Article  CAS  PubMed  Google Scholar 

  • Kersch-Becker MF, Thaler JS (2014) Virus strains differentially induce plant susceptibility to aphid vectors and chewing herbivores. Oecologia 174:883–892

    Article  PubMed  Google Scholar 

  • Kettles GJ, Drurey C, Schoonbeek H, Maule AJ, Hogenhaut S (2013) Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytol 198:1178–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klingler JP, Creasy R, Gao L, Nair RM, Calix AS, Spafford Jacob H, Edwards OR, Singh KB (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137:1445–1455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klingler JP, Edwards OR, Singh KB (2007) Independent action and contrasting phenotypes of resistance genes against spotted alfalfa aphid and blue-green aphid in Medicago truncatula. New Phytol 173:630–640

    Article  CAS  PubMed  Google Scholar 

  • Klingler JP, Nair RM, Edwards OR, Singh KB (2009) A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid. J Exp Bot 60:4115–4127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kombrink E, Somssich IE (1997) Pathogenesis-related proteins and plant defense. In: Carrol GC, Tudzynski P (eds) The mycota V part A, plant relationships. Springer, Berlin, pp 107–128

    Google Scholar 

  • Kroes A, van Loon JJ, Dicke M (2015) Density-dependent interference of aphids with caterpillar-induced defenses in Arabidopsis: involvement of phytohormones and transcription factors. Plant Cell Physiol 56:98–106

    Article  PubMed  Google Scholar 

  • Kuśnierczyk A, Winge PER, Jørstad TS, Troczyńska J, Rossiter JT, Bones AM (2008) Towards global understanding of plant defence against aphids: timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ 31:1097–1115

    Article  PubMed  Google Scholar 

  • Kutyniok M, Müller M (2012) Crosstalk between above- and belowground herbivores is mediated by minute metabolic responses of the host Arabidopsis thaliana. J Exp Botany 63:6199–6210

    Article  CAS  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Li Y, Zou J, Li M, Bilgin DD, Vodkin LO, Hartman GL, Clough SJ (2008) Soybean defense responses to the soybean aphid. New Phytol 179:185–195

    Article  CAS  PubMed  Google Scholar 

  • Louis J, Shah J (2013) Arabidopsis thalianaMyzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Front Plant Sci. doi:10.3389/fpls.2013.00213

    Google Scholar 

  • Mai VC, Drzewiecka K, Jelen H, Narozna D, Rucinska-Sobkowiak R, Kesy J, Floryszak-Wieczorek J, Gabrys B, Morkunas I (2014) Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci 221(222):1–12

    Article  PubMed  Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signalling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138:1149–1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mewis I, Khan MAM, Glawischnig E, Schreiner M, Ulrichs C (2012) Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). PLoS One 7(11):e48661. doi:10.1371/journal.pone.0048661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohase L, van der Westhuizen AJ (2002) Salicylic acid is involved in resistance responses in the Russian wheat aphid–wheat interaction. J Plant Physiol 159:585–590

    Article  CAS  Google Scholar 

  • Moran P, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074–1085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moran PJ, Cheng Y, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant–aphid interactions. Arch Insect Biochem Physiol 51:182–203

    Article  CAS  PubMed  Google Scholar 

  • Naoumkina M, Farag MA, Sumner LW, Tang YH, Liu CJ, Dixon RA (2007) Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci 104:17909–17915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paul ND, Hatcher PE, Taylor JE (2000) Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci 5:220–225

    Article  CAS  PubMed  Google Scholar 

  • Pegadaraju V, Knepper C, Reese J, Shah J (2005) Premature leaf senescence modulated by the PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol 139:1927–1934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piepho H-P, Williams ER, Fleck M (2006) A note on the analysis of designed experiments with complex treatment structure. HortScience 41:446–452

    Google Scholar 

  • Pieterse CMJ, VanWees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    Article  CAS  PubMed  Google Scholar 

  • Rosa-Gomes MF, Salvadori JR, Schons J (2008) Damage of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on wheat plants related to duration time and density of infestation. Neotrop Entomol 37:577–581

    Article  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD (1996) Systemic acquired resistance. Plant J 8:1809–1819

    CAS  Google Scholar 

  • Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate- and salicylate mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Stewart SA, Hodge S, Ismail N, Mansfield JM, Feys BJ, Prosperi J-M, Huguet T, Ben C, Gentzbittel L, Powell G (2009) The RAP1 gene confers extreme, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Mol Plant- Microbe Interact 12:1645–1655

    Article  Google Scholar 

  • Studham ME, MacIntosh GC (2013) Multiple phytohormone signals control the transcriptional response to soybean aphid infestation in susceptible and resistant soybean plants. Mol Plant Microbe Interact 26:116–129

    Article  CAS  PubMed  Google Scholar 

  • Takemoto H, Uefune M, Ozawa R, Arimura G-I, Takabayashi J (2013) Previous infestation of pea aphids Acyrthosiphon pisum on broad bean plants resulted in the increased performance of conspecific nymphs on the plants. J Plant Interact 8:370–374

    Article  Google Scholar 

  • Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by nphloem feeding insects. J Exp Bot 57:755–766

    Article  CAS  PubMed  Google Scholar 

  • Tretner C, Hut U, Hause B (2008) Mechanostimulation of Medicago truncatula leads to enhanced levels of jasmonic acid. J Exp Bot 59:2847–2856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Truman W, Bennett MH, Kubigstelig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci 104:1075–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Truong D-H, Delory BM, Vanderplanck M, Brostaux Y, Vandereycken A, Heuskin S, Delaplace P, Francis F, Lognay G (2014) Temperature regimes and aphid density interactions differentially influence VOC emissions in Arabidopsis. Arthropod Plant Interact 8:317–327

    Google Scholar 

  • van der Westhuizen AJ, Qian XM, Botha AM (1998) Differential induction of apoplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation. Plant Cell Rep 18:132–137

    Article  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Zhang P-J, Huang F, Zhang J-M, Wei J-N, Lu Y-B (2015) The mealybug Phenacoccus solenopsis suppresses plant defense responses by manipulating JA–SA crosstalk. Sci Rep 5:9354. doi:10.1038/srep09354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu-Salzman K, Bi J-L, Liu T-X (2005) Molecular strategies of plant defense and insect counter defense. Insect Sci 12:3–15

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a Ph.D. studentship (to S. A. S.) and research grant (to G. P.) from the Biotechnology and Biological Sciences Research Council, UK. Our thanks go to Dr Martin Selby for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Hodge.

Additional information

Handling Editor: Robert Glinwood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, S.A., Hodge, S., Bennett, M. et al. Aphid induction of phytohormones in Medicago truncatula is dependent upon time post-infestation, aphid density and the genotypes of both plant and insect. Arthropod-Plant Interactions 10, 41–53 (2016). https://doi.org/10.1007/s11829-015-9406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-015-9406-8

Keywords

Navigation