Skip to main content
Log in

Simple Synthesis and Thermoelectric Properties of Mg2 + xSi0.5Sn0.5Sb0.075 Materials with Heterogeneous Microstructure

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Mg2X (X = Si, Ge or Sn) based alloys are considered as promising candidates in the middle to high temperature range thermoelectric applications due to their low cost, nontoxicity and abundance of constituent elements. However, they exhibit relatively higher thermal conductivity compared to other thermoelectric materials. In this study, we present a simple synthetic method for a Mg2 + xSi0.5Sn0.5Sb0.075 material with a heterogeneous microstructure that reduces thermal conductivity. By controlling the amount of excess Mg during synthesis, a heterogeneous microstructure due to the formation of secondary phases was obtained. This heterogeneous microstructure reduced the thermal conductivity through phonon scattering, leading to an improved thermoelectric efficiency, particularly at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.I. Manousiouthakis, S.H. Choi, Korean J. Chem. Eng. 38, 2003 (2021)

    Article  CAS  Google Scholar 

  2. X.-L. Shi, J. Zou, Z.-G. Chen, Chem. Rev. 120, 7399 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. M.A. Zoui, S. Bentouba, J.G. Stocholm, M. Bourouis, Energies (Basel). 13, 3606 (2020)

    Article  CAS  Google Scholar 

  4. H.J. Im, B. Koo, M.-S. Kim, J.E. Lee, Korean J. Chem. Eng. 39, 1227 (2022)

    Article  CAS  Google Scholar 

  5. S. Leblanc, S.K. Yee, M.L. Scullin, C. Dames, K.E. Goodson, Renew. Sustain. Energy Rev. 32, 313 (2014)

    Article  CAS  Google Scholar 

  6. M.B.A. Bashir, S. Mohd Said, M.F.M. Sabri, D.A. Shnawah, M.H. Elsheikh, Renew. Sustain. Energy Rev. 37, 569 (2014)

    Article  CAS  Google Scholar 

  7. W. Liu, K. Yin, Q. Zhang, C. Uher, X. Tang, Natl. Sci. Rev. 4, 611 (2017)

    Article  CAS  Google Scholar 

  8. J. Jang, B. Ryu, S.-J. Joo, B.-S. Kim, B.-K. Min, H.-W. Lee, S.-D. Park, H.S. Lee, J.E. Lee, J. Alloys Compd. 739, 129 (2018)

    Article  CAS  Google Scholar 

  9. J. Camut, N.H. Pham, D.Y. Nhi Truong, G. Castillo-Hernandez, N. Farahi, M. Yasseri, E. Mueller, J. de Boor, Mater. Today Energy. 21, 100718 (2021)

    Article  CAS  Google Scholar 

  10. D.C. Ramirez, L.R. Macario, X. Cheng, M. Cino, D. Walsh, Y.-C. Tseng, H. Kleinke, ACS Appl. Energy Mater. 3, 2130 (2020)

    Article  CAS  Google Scholar 

  11. G.K. Goyal, T. Dasgupta, Mater. Sci. Eng. B 272, 115338 (2021)

    Article  CAS  Google Scholar 

  12. N. Jia, J. Cao, X.Y. Tan, J. Dong, H. Liu, C.K.I. Tan, J. Xu, Q. Yan, X.J. Loh, A. Suwardi, Mater. Today Phys. 21, 100519 (2021)

    Article  CAS  Google Scholar 

  13. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. W. Luo, M. Yang, F. Chen, Q. Shen, H. Jiang, L. Zhang, Mater. Sci. Eng. B 157, 96 (2009)

    Article  CAS  Google Scholar 

  15. G. Jiang, J. He, T. Zhu, C. Fu, X. Liu, L. Hu, X. Zhao, Adv. Funct. Mater. 24, 3776 (2014)

    Article  CAS  Google Scholar 

  16. K. Kaur, R. Kumar, J. Electron. Mater. 46, 4682 (2017)

    Article  ADS  CAS  Google Scholar 

  17. P. Gao, X. Lu, I. Berkun, R.D. Schmidt, E.D. Case, T.P. Hogan, T.P. Hogan, Appl. Phys. Lett. 105, 202104 (2014)

    Article  ADS  Google Scholar 

  18. S.-M. Choi, T.H. An, W.-S. Seo, C. Park, I.-H. Kim, S.-U. Kim, J. Electron. Mater. 41, 1071 (2012)

    Article  ADS  CAS  Google Scholar 

  19. Y. Masuoka, Y. Mito, A. Ogino, T. Nakamura, K. Amano, R. Asahi, J. Alloys Compd. 781, 606 (2019)

    Article  CAS  Google Scholar 

  20. D. Shiojiri, T. Iida, H. Kakio, M. Yamaguchi, N. Hirayama, Y. Imai, J. Alloys Compd. 891, 161968 (2022)

    Article  CAS  Google Scholar 

  21. H. Kamila, G.K. Goyal, A. Sankhla, P. Ponnusamy, E. Mueller, T. Dasgupta, J. de Boor, Mater. Today Phys. 9, 100133 (2019)

    Article  Google Scholar 

  22. B.I. Rabiu, B. Huang, W.A. Shah, X. Luo, Y.Q. Yang, Chem. Phys. Lett. 823, 140512 (2023)

    Article  CAS  Google Scholar 

  23. G.K. Goyal, S. Mukherjee, R.C. Mallik, S. Vitta, I. Samajdar, T. Dasgupta, ACS Appl. Energy Mater. 2, 2129 (2019)

    Article  CAS  Google Scholar 

  24. J. Tani, H. Kido, Comput. Mater. Sci. 42, 531 (2008)

    Article  CAS  Google Scholar 

  25. H. Ma, D. Kim, S.I. Park, B.K. Choi, G. Park, H. Baek, H. Lee, H. Kim, J. Yu, W.C. Lee, J. Park, J. Yang, Adv. Sci. 10, 2205690 (2023)

    Article  CAS  Google Scholar 

  26. M. Yasseri, K. Mitra, A. Sankhla, J. de Boor, E. Müller, Acta Mater. 208, 116737 (2021)

    Article  CAS  Google Scholar 

  27. G.S. Polymeris, N. Vlachos, A.U. Khan, E. Hatzikraniotis, C.B. Lioutas, A. Delimitis, E. Pavlidou, Paraskevopoulos, and Th. Kyratsi. Acta Mater. 83, 285 (2015)

    Article  ADS  CAS  Google Scholar 

  28. S. Byeon, B. Wiendlocha, J. de Boor, K. Nielsch, H. Jin, J. Alloys Compd. 954, 170157 (2023)

    Article  CAS  Google Scholar 

  29. M. Cahana, H. Hayun, Y. Gelbstein, Phys. Chem. Chem. Phys. 24, 21223 (2022)

    Article  CAS  PubMed  Google Scholar 

  30. W. Liu, H. Chi, H. Sun, Q. Zhang, K. Yin, X. Tang, Q. Zhang, C. Uher, Phys. Chem. Chem. Phys. 16, 6893 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. C.-H. Su, Mater. Today Phys. 5, 58 (2018)

    Article  Google Scholar 

  32. K. Yin, X. Su, Y. Yan, C. Uher, X. Tang, RSC Adv. 6, 16824 (2016)

    Article  ADS  CAS  Google Scholar 

  33. Y. Zheng, T.J. Slade, L. Hu, X.Y. Tan, Y. Luo, Z.-Z. Luo, J. Xu, Q. Yan, M.G. Kanatzidis, Chem. Soc. Rev. 50, 9022 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. N. Jia, X.Y. Tan, J. Xu, Q. Yan, M.G. Kanatzidis, Acc. Mater. Res. 3, 237 (2022)

    Article  CAS  Google Scholar 

  35. W. Liu, X. Tang, H. Li, K. Yin, J. Sharp, X. Zhou, C. Uher, J. Mater. Chem. 22, 13653 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2021R1A2C1011317) and by Chonnam National University (Grant number: 2022–2906).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Il Park or Ji Eun Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J., Min, BK., Kim, BS. et al. Simple Synthesis and Thermoelectric Properties of Mg2 + xSi0.5Sn0.5Sb0.075 Materials with Heterogeneous Microstructure. Korean J. Chem. Eng. 41, 533–538 (2024). https://doi.org/10.1007/s11814-024-00105-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00105-5

Keywords

Navigation