Skip to main content
Log in

High Thermoelectric Properties in Mg2Ge0.25Sn0.75−xSbx Solid Solution

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mg2Sn-based solid solutions Mg2Ge0.25Sn0.75−xSbx (x = 0, 0.03, 0.05, 0.07, 0.10, 0.15) were synthesized by high-frequency melting in a graphite crucible, followed by spark plasma sintering. The effects of Sb substitution on the phase constitution and thermoelectric properties of the solution were investigated. All the samples were face-centered cubic Mg2Ge0.25Sn0.75 solutions without any additional phase arising from Sb in the compounds. The electrical resistivity decreased significantly from 202 μΩ m to 3.66 μΩ m at 300 K as lower Sb content x increased from 0 to 0.03, but increased slightly from 3.66 μΩ m to 11.6 μΩ m at 300 K as Sb content x further increased from 0.03 to 0.15. The Seebeck coefficient showed a similar pattern of change. The thermal conductivity of the solid solution clearly decreased from 3.6 W m−1 K−1 to 1.4 W m−1 K−1 at 300 K as Sb content x increased from 0 to 0.15. The highest power factor of 4010 μW m−1 K−2 was obtained in the sample of Mg2Ge0.25Sn0.72Sb0.03 at 573 K. The lowest thermal conductivity of 1.17 W m−1 K−1 was found in Mg2Ge0.25Sn0.65Sb0.1 at 473 K. The maximum ZT of 1.54 was obtained in Mg2Ge0.25Sn0.68Sb0.07 at 623 K. Compared with the value 0.03 for its parent alloy at the same temperature, this is a dramatic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. He, Y. Liu, and R. Funahashi, J. Mater. Res. 26, 1762 (2011).

    Article  Google Scholar 

  2. S.R. Sankar, D.P. Wong, C.S. Chi, W.L. Chien, J.S. Hwang, F.C. Chou, L.C. Chen, and K.H. Chen, CrystEngComm 17, 3440 (2015).

    Article  Google Scholar 

  3. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  Google Scholar 

  4. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  5. W.T. Liu, X.F. Tang, H. Li, J. Sharp, X.Y. Zhou, and C. Uher, Chem. Mat. 23, 5256 (2011).

    Article  Google Scholar 

  6. S.W. You and I.H. Kim, J. Korean Phys. Soc. 64, 690 (2014).

    Article  Google Scholar 

  7. S. Nakamura, Y. Mori, and K.I. Takarabe, J. Electron. Mater. 43, 2174 (2014).

    Article  Google Scholar 

  8. K. Kambe and H. Udono, J. Electron. Mater. 43, 2212 (2014).

    Article  Google Scholar 

  9. X.K. Hu, D. Mayson, and M.R. Barnett, J. Alloys Compd. 589, 485 (2014).

    Article  Google Scholar 

  10. H. Gao, T. Zhu, X. Zhao, and Y. Deng, Dalton Trans. 43, 14072 (2014).

    Article  Google Scholar 

  11. J. de Boor, C. Compere, T. Dasgupta, C. Stiewe, H. Kolb, A. Schmitz, and E. Mueller, J. Mater. Sci. 49, 3196 (2014).

    Article  Google Scholar 

  12. S.W. You, D.K. Shin, and I.H. Kim, J. Korean Phys. Soc. 64, 1346 (2014).

    Article  Google Scholar 

  13. M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).

    Article  Google Scholar 

  14. H.L. Gao, X.X. Liu, T.J. Zhu, S.H. Yang, and X.B. Zhao, J. Electron. Mater. 40, 830 (2011).

    Article  Google Scholar 

  15. M.A.B. Bashir, S.M. Said, M.F.M. Sabri, D.A. Shnawah, and M.H. Elsheikh, Renew. Sust. Energy Rev. 37, 569 (2014).

    Article  Google Scholar 

  16. W. Liu, X.J. Tan, K. Yin, H.J. Liu, X.F. Tang, J. Shi, Q.J. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).

    Article  Google Scholar 

  17. X. Zhang, H.L. Liu, S.H. Li, F.P. Zhang, Q.M. Lu, and J.X. Zhang, Mater. Lett. 123, 31 (2014).

    Article  Google Scholar 

  18. X.K. Hu, M.R. Barnett, and A. Yamamoto, J. Alloys Compd. 649, 1060 (2015).

    Article  Google Scholar 

  19. S.W. You, D.K. Shin, and I.H. Kim, J. Korean Phys. Soc. 65, 691 (2014).

    Article  Google Scholar 

  20. P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams (New York: ASM International, 1995), pp. 236–237.

    Google Scholar 

  21. W.S. Liu, H.S. Kim, S. Chen, Q. Jie, B. Lv, M. Yao, Z. Ren, C.P. Opeil, S. Wilson, C.W. Chu, and Z. Ren, Proc. Natl. Acad. Sci. U.S.A. 112, 3269 (2015).

    Article  Google Scholar 

  22. S.J. Su, B.W. Cheng, C.L. Xue, D.L. Zhang, G.Z. Zhang, and Q.M. Wang, Acta Phys. Sin. 61, 176104 (2012).

    Google Scholar 

  23. S.M. Choi, T.H. An, W.S. Seo, C. Park, I.H. Kim, and S.U. Kim, J. Electron. Mater. 41, 1071 (2012).

    Article  Google Scholar 

  24. H.L. Gao, T.J. Zhu, X.B. Zhao, and Y. Deng, Intermetallics 56, 33 (2015).

    Article  Google Scholar 

  25. S. Sharma and S.K. Pandey, Comp. Mater. Sci. 85, 340 (2014).

    Article  Google Scholar 

  26. C.M. Bhandari and D.M. Rowe, Thermal Conduction in Semiconductors (New York: Wiley, 1988), pp. 115–119.

    Google Scholar 

  27. J.Q. Li, X.X. Li, F.S. Liu, W.Q. Ao, and H.T. Li, J. Electron. Mater. 42, 366 (2013).

    Article  Google Scholar 

  28. S.W. You, D.K. Shin, S.C. Ur, and I.H. Kim, J. Electron. Mater. 44, 1504 (2015).

    Article  Google Scholar 

  29. G.S. Polymeris, N. Vlachos, A.U. Khan, E. Hatzikraniotis, C.B. Lioutas, A. Delimitis, E. Pavlidou, K.M. Paraskevopoulos, and T. Kyratsi, Acta Mater. 83, 285 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Nos: 51101103, 51171117 and 51571144), and Shenzhen Science and Technology Research Grant (Nos. JCYJ20150827155136104, JCYJ20150324141711684 and JCYJ20150069). The authors would like to thank Mr. Haizhao Yu and Jun Pei for their help with the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqin Ao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, W., Peng, M., Liu, F. et al. High Thermoelectric Properties in Mg2Ge0.25Sn0.75−xSbx Solid Solution. J. Electron. Mater. 48, 5959–5966 (2019). https://doi.org/10.1007/s11664-019-07315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07315-2

Keywords

Navigation