Skip to main content
Log in

Polyurea membrane for water cleaning: Kinetic and equilibrium modeling of dyes adsorption

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The present treatment of water from aqueous solutions, reported from our research work, uses polyurea (PU) as a novel adsorbent. Specifically, the adsorption efficacy of PU was tested in dyes with different characteristics (Congo red (CR) and methylene blue (MB)). The PU membrane was obtained by a sol-gel chemistry reaction of polyetheramine with polyisocyanate resulting in the formation of urea groups, confirmed through FTIR analysis. The polymeric membrane exhibited a high homogeneity, making it a viable purifying technology for wastewater. The high swelling capacity of the membrane played a crucial role in the CR dye diffusion/adsorption. Notably, PU membranes showed excellent adsorption to CR anionic dye, resulting in a removal efficiency over 85%. However, MB dye adsorption was less favorable, suggesting a high affinity with anionic species. Our analysis revealed that the adsorption of CR dye onto PU membranes follows the pseudo-second order kinetic and Langmuir isotherm models. Moreover, the intra-particle diffusion model demonstrated that the swelling of PU facilitates the adsorption/diffusion process, thereby accelerating the mass transfer of the CR dye onto the membrane. Overall, our findings suggest that PU membranes derived from commercially available reagents are highly promising for the decontamination of dye wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Jana, A. Gupta, R. Choudhary and O. P. Pandey, J. Sol-Gel Sci. Technol., 96, 405 (2020).

    Article  CAS  Google Scholar 

  2. M. Jose, M. Kumari, R. Karunakaran and S. Shukla, J. Sol-Gel Sci. Technol., 75, 541 (2015).

    Article  CAS  Google Scholar 

  3. N. Singh, S. Riyajuddin, K. Ghosh, S. K. Mehta and A. Dan, ACS Appl. Nano Mater., 2, 7379 (2019).

    Article  CAS  Google Scholar 

  4. P. Rajapaksha, R. Orrell-Trigg, Y. B. Truong, D. Cozzolino, V. K. Truong and J. Chapman, Environ. Sci. Adv., 1, 456 (2022).

    Article  Google Scholar 

  5. A. Huang, M. Yan, J. Lin, L. Xu, H. Gong and H. Gong, Int. J. Environ. Res. Public Health, 18, 4909 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. M. Tarekegn, R. M. Balakrishnan, A. M. Hiruy and A. H. Dekebo, RSC Adv., 11, 30109 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J. Shu, Z. Wang, Y. Huang, N. Huang, C. Ren and W. Zhang, J. Alloys Compd., 633, 338 (2015).

    Article  CAS  Google Scholar 

  8. Y. Y. Chen, S. H. Yu, H. F. Jiang, Q. Z. Yao, S. Q. Fu and G. T. Zhou, Appl. Surf. Sci., 444, 224 (2018).

    Article  CAS  Google Scholar 

  9. Y. Zheng, B. Cheng, J. Fan, J. Yu and W. Ho, J. Hazard. Mater., 403, 123559 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. A. Shinko, S. C. Jana and M. A. Meador, RSC Adv., 5, 105329 (2015).

    Article  CAS  Google Scholar 

  11. A. Sanchez-Ferrer, D. Rogez and P. Martinoty, Macromol. Chem. Phys., 211, 1712 (2010).

    Article  CAS  Google Scholar 

  12. M. A. de Resende, G. A. Pedroza, L. H. G. M. C. Macêdo, R. Oliveira, M. Amela-Cortes, Y. Molard and E. F. Molina, J. Appl. Polym. Sci., 139, 51970 (2022).

    Article  CAS  Google Scholar 

  13. G. A. Pedroza, L. H. G. M. C. Macêdo, R. Oliveira, N. N. Silveira, R. P. Orenha, R. L. T. Parreira, R. A. Santos, Y. Molard, M. Amela-Cortes and E. F. Molina, J. Drug Deliv. Sci. Technol., 76, 103744 (2022).

    Article  CAS  Google Scholar 

  14. B. Yu, Y. Luo, H. Cong, C. Gu, W. Wang, C. Tian, J. Zhai and M. Usman, RSC Adv., 6, 111806 (2016).

    Article  CAS  Google Scholar 

  15. R. Dsouza, D. Sriramulu and S. Valiyaveettil, RSC Adv., 6, 24508 (2016).

    Article  CAS  Google Scholar 

  16. J. Mattia and P. Painter, Macromolecules, 40, 1546 (2007).

    Article  CAS  Google Scholar 

  17. A. Sánchez-Ferrer, V. Soprunyuk, M. Engelhardt, R. Stehle, H. A. Gilg, W. Schranz and K. Richter, ACS Appl. Polym. Mater., 3, 4070 (2021).

    Article  Google Scholar 

  18. V. Z. Bermudez, L. D. Carlos and L. Alcacer, Chem. Mater., 11, 569 (1999).

    Article  Google Scholar 

  19. M. Paredes, S. H. Pulcinelli, C. Peniche, V. Gonçalves and C. V. Santilli, J. Sol-Gel Sci. Technol., 72, 233 (2014).

    Article  CAS  Google Scholar 

  20. N. A. M. de Jesus, A. H. P. de Oliveira, D. C. Tavares, R. A. Furtado, M. L. A. Silva, W. R. Cunha and E. F. Molina, J. Sol-Gel Sci. Technol., 88, 192 (2018).

    Article  CAS  Google Scholar 

  21. L. Lian, L. Guo and C. Guo, J. Hazard. Mater., 161, 126 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Y. S. Ho, J. Hazard. Mater., 136, 681 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Y. S. Ho and G. McKay, Water Res., 34, 735 (2000).

    Article  CAS  Google Scholar 

  24. Y. S. Ho and G. McKay, Process Saf. Environ. Prot., 76, 332 (1998).

    Article  CAS  Google Scholar 

  25. T. Cai, H. Chen, L. Yao and H. Peng, Int. J. Mol. Sci., 24, 684 (2023).

    Article  CAS  Google Scholar 

  26. W. J. J. Weber, Kinetics of adsorption of carbon from solution. In: J. C. Morris (Hrsg.). Journal of the Sanitary Engineering Division, American Society of Civil Engineers. Sanitary Engineering Division 31–59 (1963).

  27. L. K. de Oliveira, A. L. A. Moura, V. Barbosa, R. L. T. Parreira, R. S. Banegas, G. F. Caramori, K. J. Ciuffi and E. F. Molina, Environ. Sci. Pollut. Res., 24, 18421 (2017).

    Article  CAS  Google Scholar 

  28. A. L. A. Moura, L. K. de Oliveira, K. J. Ciuffi and E. F. Molina, J. Mater. Chem. A, 3, 16020 (2015).

    Article  CAS  Google Scholar 

  29. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  30. H. M. F. Freundlich, J. Phys. Chem., 57, 385 (1906).

    CAS  Google Scholar 

  31. S. Tang, D. Xia, Y. Yao, T. Chen, J. Sun, Y. Yin, W. Shen and Y. Peng, J. Colloid Interface Sci., 554, 682 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. T. Feng, F. Zhang, J. Wang and L. Wang, J. Appl. Polym. Sci., 125, 1766 (2012).

    Article  CAS  Google Scholar 

  33. M. Harja, G. Buema and D. Bucur, Sci. Rep., 12, 6087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. R. S. Farias, H. L. B. Buarque, M. R. Cruz, L. M. F. Cardoso, T. A. Gondim and V. R. Paulo, Eng. Sanit. E Ambient., 23, 1053 (2018).

    Article  Google Scholar 

  35. A. Dbik, S. Bentahar, M. E. Khomri, N. E. Messaoudi and A. Lacherai, Mater. Today: Proc., 22, 134 (2020).

    Article  CAS  Google Scholar 

  36. B. Meroufel, O. Benali, M. Benyahia, Y. Benmoussa and M. A. Zenasni, J. Mater. Environ. Sci., 4, 482 (2013).

    CAS  Google Scholar 

  37. A. Extross, A. Waknis, C. Tagad, V. V. Gedam and P. D. Pathak, Int. J. Environ. Sci. Technol., 20, 1607 (2023).

    Article  CAS  Google Scholar 

  38. A. B. F. Câmara, R. V. Sales, C. V. S. Júnior, M. A. F. de Souza, C. Longe, T. M. Chianca, R. D. Possa, R. C. Bertolino and L. S. Carvalho, Korean J. Chem. Eng., 39, 1805 (2022).

    Article  Google Scholar 

  39. P. Marín San Román and R. P. Sijbesma, Adv. Mater. Interfaces, 9, 2200341 (2022).

    Article  Google Scholar 

  40. P. Marin San Roman, K. Nijmeijer and R. P. Sijbesma, J. Membr. Sci., 644, 120097 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Huntsman Performance Products and Bayer Group for their generous donation of Jeffamine® and triisocyanate crosslinker reagents, respectively. This research was funded by FAPESP grant n° 2021/06552-1, CAPES - Finance Code 001, and CNPq n° 307696/2021-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Ferreira Molina.

Ethics declarations

Conflicts of interest: There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Campo Calvo, P., de Oliveira, L.K., de Oliveira, N.A.A. et al. Polyurea membrane for water cleaning: Kinetic and equilibrium modeling of dyes adsorption. Korean J. Chem. Eng. 40, 2982–2989 (2023). https://doi.org/10.1007/s11814-023-1532-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1532-x

Keywords

Navigation