Skip to main content
Log in

Eco-friendly adsorption of dye pollutants by palygorskite in aqueous effluents: Experimental and computational studies

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Palygorskite clay mineral (Pal) was employed in the removal of Congo red (CR) and methylene blue (MB) dyes pollutants in aqueous effluents by the adsorption process. The materials, Pal raw and acid Pal (Apal), were characterized by SEM, EDX, XRD, XFR, FTIR, XPS and Raman spectroscopy techniques that evidenced the main active sites of clay mineral. Characterization data indicated that acid treatment caused a leaching process of metallic cations on the Pal surface. As result, the maximum adsorption capacity was increased from 11.3 to 120.5 mg·g−1 and from 2.7 to 238.1 mg·g−1 for MB and CR dyes, respectively. The regeneration result after five cycles was of 75% recovered to MB adsorption into Apal. Semi-empirical quantum mechanical (SQM) calculations were performed to identify the mechanism of interaction between the Pal surface and dyes. High correlation (R2>0.99) was observed for the experimental data using the pseudo-second-order kinetic model, that were confirmed by computed enthalpy values (−298.7 to −84.5 kJ·mol−1), suggesting a chemisorption process as the determining step. Furthermore, the experimental and computational results indicated that the Pal also could work removing efficiently two dyes simultaneously with an adsorption capacity of 37.2 and 40.4 mg·g−1 for MB and CR, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Divriklioglu, S. T. Akar and T. Akar, Environ. Sci. Pollut. R., 26, 25834 (2019).

    Article  CAS  Google Scholar 

  2. G. Crini, G. Torri, E. Lichtfouse, G. Z. Kyzas, L. D. Wilson and N. Morin-Crini, Environ. Chem. Lett., 17, 1645 (2019).

    Article  CAS  Google Scholar 

  3. L. D. Youcef, L. S. Belaroui and A. Lópes-Galindo, Appl. Clay Sci., 179, 105145 (2019).

    Article  CAS  Google Scholar 

  4. A. K. Prajapati and M. K. Mondal, J. Mol. Liq., 307, 112949 (2020).

    Article  CAS  Google Scholar 

  5. A. S. Eltaweil, G. S. Elgarhym, G. M. El-Subruiti and A. M. Omer, Int. J. Biol. Macromol., 154, 307 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Z. Li, H. Hanafy, L. Zhang, L. Sellaoui, M. S. Netto, M. L. S. Oliveira, M. K. Seliem, G. L. Dotto, A. Bonilla-Petriciolet and Q. Li, Chem. Engineer. J., 388, 124263 (2020).

    Article  CAS  Google Scholar 

  7. J. N. Wekoye, W. C. Wanyonyi, P. T. Wangila and M. K. Tonui, Environ. Chem. Ecotoxicol., 2, 24 (2020).

    Article  Google Scholar 

  8. T. A. Saleh, A. M. Elsharif and O. A. Bin-Dahman, J. Mol. Liq., 340, 117024 (2021).

    Article  CAS  Google Scholar 

  9. A. A. Basaleh, M. H. Al-Malack and T. A. Saleh, J. Environ. Chem. Eng., 9, 105126 (2021).

    Article  CAS  Google Scholar 

  10. I. Chaari, E. Fakfakh, M. Medhioub and F. Jamoussi, J. Mol. Struc., 1179, 672 (2019).

    Article  CAS  Google Scholar 

  11. P. R. Souza, G. L. Dotto and N. P. G. Salau, J. Environ. Chem. Engineer., 7, 102891 (2019).

    Article  CAS  Google Scholar 

  12. J. Pan, R. Li, L. Zhai, Z. Zhang, J. Ma and H. Liu, J. Clean. Prod., 217, 371 (2019).

    Article  CAS  Google Scholar 

  13. U. Zhang, W. Wang, J. Zhang, P. Liu and A. Wang, Chem. Eng. J., 263, 390 (2015).

    Google Scholar 

  14. M. A. Moreira, K. J. Ciuffi, V. Rives, M. A. Vicente, R. Trujillano, A. Gil, S. A. Korili and E. H. Faria, Appl. Clay Sci., 135, 394 (2017).

    Article  CAS  Google Scholar 

  15. G. Qiu, Q. Xie, H. Liu, T. Chen, J. Xie and H. Li, Appl. Clay Sci., 118, 107 (2015).

    Article  CAS  Google Scholar 

  16. F. Zha, W. Huang, J. Wang, Y. Chang, J. Ding and J. Ma, Chem. Eng. J., 215, 579 (2013).

    Article  CAS  Google Scholar 

  17. A. Middea T. L. A. P. Fernandes, R. Neumann, O. F. M. Gomes and L. S. Spinelli, Appl. Surf. Sci., 282, 253 (2013).

    Article  CAS  Google Scholar 

  18. W. Li, J. Liu, J. Su, J. Wu, Y. Xia, L. Zhu, Z. Xu, W. Zhao, Y. Yan and D. Zhang, J. Clean. Prod., 226, 781 (2019).

    Article  CAS  Google Scholar 

  19. H. M. Rietveld, Acta Crystallogy., 22, 151 (1967).

    Article  CAS  Google Scholar 

  20. A. E. S. Choi, S. Roces, N. Dugos, A. Arcega and M. Wei Wan, J. Clean. Prod., 161, 267 (2017).

    Article  CAS  Google Scholar 

  21. K. S. Tong, M. J. Kassin and A. Azraa, Chem. Eng. J., 170, 145 (2011).

    Article  CAS  Google Scholar 

  22. F. Raganati, M. Alfe, V. Gargiulo, R. Chirone and P. Ammendola, Chem. Eng. J., 372, 526 (2019).

    Article  CAS  Google Scholar 

  23. A. Habibi, L. S. Belaroui, A. Bengueddach, A. L. Galindo, C. I. S. Díaz and A. Peña, Micropor. Mesopor. Mater., 268, 293 (2018).

    Article  CAS  Google Scholar 

  24. S. Spicher and S. Grimme, Angew. Chem. Int. Ed., 59, 2 (2020).

    Article  CAS  Google Scholar 

  25. A. Klamt and G. Schüürmann, J. Chem. Soc., Perkin Trans, 2, 799 (1993).

    Article  Google Scholar 

  26. J. P. Stewart, MOPAC2016, Stewart Computational Chemistry, Colorado Springs, CO, USA. http://OpenMOPAC.net (accessed 29 June 2021).

  27. J. J. P. Stewart, Int. J. Quantum Chem., 58, 133 (1996).

    Article  CAS  Google Scholar 

  28. A. Li, H. S. Muddana and M. K. Gilson, J. Chem. Theory Comput., 10, 1563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. C. R. A. Daniel, N. M. Rodrigues, N. B. Costa Jr. and R. O. Freire, J. Phys. Chem. C, 119, 23398 (2015).

    Article  CAS  Google Scholar 

  30. M. Enescu, J. Ridard, V. Gheorghe and B. Levy, J. Phys. Chem. B, 106, 176 (2002).

    Article  CAS  Google Scholar 

  31. W. Xiaoyan, Y. Sun, D. Pan, Z. Niu, Z. Xu, Y. Jiang, W. Wu, Z. Li, L. Zhang and Q. Fan, Appl. Clay Sci., 183, 105363 (2019).

    Article  CAS  Google Scholar 

  32. Y. Lu, W. Wang, Q. Wang, J. Xu and A. Wang, Appl. Clay Sci., 183, 105301 (2019).

    Article  CAS  Google Scholar 

  33. D. Huang, Y. Zheng and Q. Quan, Appl. Clay Sci., 183, 105314 (2019).

    Article  CAS  Google Scholar 

  34. F. R. G. V. Rosendo, L. I. F. Pinto, I. S. de Lima, P. Trigueiro, L. M. d. C. Honório, M. G. Fonseca, E. C. Silva-Filho, A. B. Ribeiro, M. B. Furtini and J. A. Osajima, Appl. Clay Sci., 188, 105499 (2020).

    Article  CAS  Google Scholar 

  35. J. A. Cecilia, E. Vilarrasa-García, C. L. Cavalcante, D. C. S. Azevedo, F. Franco and E. Rodríguez-Castellón, J. Environ. Chem. Eng., 6, 4573 (2018).

    Article  CAS  Google Scholar 

  36. D. Wang, L. Zhu, J. Qiu and P. Zhu, Appl. Clay Sci., 185, 105421 (2020).

    Article  CAS  Google Scholar 

  37. N. Frini-Srasra and E. Srasra, Desalination, 250, 26 (2010).

    Article  CAS  Google Scholar 

  38. J. Zhu, P. Zhang, Y. Wang, K. Wen, X. Su, R. Zhu, H. He and Y. Xi, Appl. Clay Sci., 159, 60 (2018).

    Article  CAS  Google Scholar 

  39. C. Wang, X. Zou, H. Liu, T. Chen, S. L. Suib, D. Chen, J. Xie, M. Li and F. Sun, Appl. Surf. Sci., 486, 420 (2019).

    Article  CAS  Google Scholar 

  40. T. A. Saleh and V. K. Gupta, Curr. Nanosc., 8, 739 (2012).

    Article  CAS  Google Scholar 

  41. Q. Chen, R. Zhu, L. Deng, L. Ma, Q. He, J. Du, H. Fu, J. Zhang and A. Wang, Chem. Eng. J., 378, 122131 (2019).

    Article  CAS  Google Scholar 

  42. M. Zhang, J. Lu, C. Zhu, Y. Xiang, L. Xu and T. Chen, Solid State Sci., 90, 76 (2019).

    Article  CAS  Google Scholar 

  43. A. Amari, H. Gannouni, M. I. Khan, M. K. Almesfer, A. M. Elkhaleefa and A. Gannouni, Appl. Sci., 8, 2302 (2018).

    Article  CAS  Google Scholar 

  44. S. Ardizzone, C. L. Bianchi, M. Fadoni and B. Vercelli, Appl. Surf. Sci., 119, 253 (1997).

    Article  CAS  Google Scholar 

  45. S. Bentahar, A. Dbik, M. E. Khomri, N. E. Messaoudi and A. Lacherai, J. Environ. Chem. Eng., 5, 5921 (2017).

    Article  CAS  Google Scholar 

  46. G. Wang, Y. Zhang, S. Wang, Y. Wang, H. Song, S. Lv and C. Li, Environ. Sci.: Water Res. Technol., 6, 1568 (2020).

    CAS  Google Scholar 

  47. M. Shaban, M. R. Abukhadra, A. A. P. Khan and B. M. Jibali, J. Taiwan Inst. Chem. Eng., 82, 102 (2018).

    Article  CAS  Google Scholar 

  48. M. F. Oliveira, M. G. C. Silva and M. G. A. Vieira, Appl. Clay Sci., 168, 366 (2018).

    Article  CAS  Google Scholar 

  49. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1918).

    Article  Google Scholar 

  50. T. Li, T. Liao, X. Su, X. Yu, B. Han, Y. Zhu and Y. Zhang, Environ. Sci.: Water Res. Technol., 4, 1671 (2018).

    CAS  Google Scholar 

  51. K. G. Bhattacharyya and S. S. Gupta, Desalination, 272, 6 (2011).

    Article  CAS  Google Scholar 

  52. L. Mouni, L. Belkhiri, J.-C. Bollinger, A. Bouzaza, A. Assadi, A. Tirri, F. Dahmouni, K. Madani and H. Remini, Appl. Clay Sci., 153, 38 (2018).

    Article  CAS  Google Scholar 

  53. W. Hajjaji, S. Andrejkovičová, D. M. Tobaldi, A. Lopez-Galindo, F. Jammoussi, F. Rocha and J. A. Labrincha, Clay Minerals, 51, 19 (2016).

    Article  CAS  Google Scholar 

  54. O. Amrhar, H. Nassali and M. S. Elyoubi, J. Material Environ. Sci., 6, 3054 (2006).

    Google Scholar 

  55. T. Ngulube J. R. Gumbo, V. Masind and A. Maity, J. Mol. Struct., 1184, 389 (2019).

    Article  CAS  Google Scholar 

  56. J. Liu, N. Wang, H. Zhang and J. Baevens, J. Environ. Conv. Manag., 238, 473 (2019).

    Article  CAS  Google Scholar 

  57. C. Tian, C. Feng, M. Wei and Y. Wu, Chemosphere, 208, 476 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. A. Ausavasuki, C. Kampoosaen and O. Kengnok, J. Clen. Prod., 134, 506 (2016).

    Article  CAS  Google Scholar 

  59. M. Chahkandi, Material Chem. Phys., 202, 340 (2017).

    Article  CAS  Google Scholar 

  60. G. Crini and P.-M. Badot, Prog. Polym. Sci., 33, 399 (2008).

    Article  CAS  Google Scholar 

  61. T. Panczyk, P. Wolski, A. Jagusiak and M. Drach, RSC Adv., 4, 47304 (2014).

    Article  CAS  Google Scholar 

  62. L. Zhou, R. Johnson, T. Habteyes and H. Guo, J. Chem. Phys., 146, 164701 (2017).

    Article  PubMed  CAS  Google Scholar 

  63. R. G. Huber, M. A. Margreiter, J. E. Fuchs, S. von Grafenstein, C. S. Tautermann, K. R. Liedl and T. Fox, J. Chem. Inf. Model., 54, 1371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the Post-Graduate Chemistry Program (PPGQ/UFRN), the Energetic Technologies Research Group, and the Central Analitica (IQ/UFRN) and to the High-Performance Computing Center at UFRN (NPAD/UFRN). This study was partly financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anne Beatriz Figueira Câmara or Luciene Santos de Carvalho.

Additional information

Competing Interests

There are no conflicts to declare.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Câmara, A.B.F., Sales, R.V., dos Santos Júnior, C.V. et al. Eco-friendly adsorption of dye pollutants by palygorskite in aqueous effluents: Experimental and computational studies. Korean J. Chem. Eng. 39, 1805–1820 (2022). https://doi.org/10.1007/s11814-022-1101-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1101-8

Keywords

Navigation