Skip to main content

Advertisement

Log in

Exergy destruction improvement of hydrogen liquefaction process considering variations in cooling water temperature

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

As the movement for carbon neutrality spreads around the world, research on hydrogen energy is also being actively conducted. In the hydrogen value chain, liquefaction is a particularly energy-intensive process. Although the operating energy of the hydrogen liquefaction process can vary greatly depending on the season or regional cooling water temperature, previous studies have not taken this into account. In this study, we quantitatively identify the effect of the change in cooling water temperature on exergy destruction, specific energy consumption (SEC), and coefficient of performance (COP) of the liquefaction process. In addition, we propose a design improvement to reduce exergy destruction with the exergy analysis of multi-stream heat exchangers. A new design (auxiliary process) that reduces exergy destruction is proposed by analyzing the device where energy destruction occurs the most. When the cooling water temperature increases from 20 °C to 35 °C, there is a tendency for SEC and exergy destruction to increase and the COP to decrease. The new design with an auxiliary process shows a decrease in SEC and a reduced rate of increase in SEC in response to the increase in cooling water temperature. The base case without the auxiliary cycle shows that the SEC with cooling water of 35 °C is 14.66% greater than that with cooling water of 20 °C, while the proposed process shows the rate of increase of 9.70%. This means that adding the auxiliary cycle can improve the energy efficiency and increase robustness to variations in ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

heat transfer area

C p :

specific heat capacity [kJ/kmole °C]

CR:

compression ratio

Ex:

rate of exergy [kW]

I:

irreversibility [kW]

k:

specific heat ratio

LMTD:

logarithmic mean temperature difference

ρ :

liquid density [kg/m3]

\(\mathop {\rm{m}}\limits^ \cdot\) :

molar flow rate [kmole/s]

P:

pressure [bar]

q:

volumetric flow rate [m3/h]

T:

temperature

U:

overall heat transfer coefficient [kW/m3·°C]

\(\mathop {\rm{W}}\limits^ \cdot\) :

work transfer rate [kW]

x:

component mole fraction

Z:

gas compressibility factor

η :

efficiency

SEC:

specific energy consumption

COM:

compressor

COP:

coefficient of performance

EXP:

expander

CRV:

conversion reactor

HX:

heat exchanger

BHP:

brake horsepower

c:

cold

Ex:

exergy

H:

hot

i:

component i

o:

outlet

P:

pump

s:

suction

°:

standard condition

References

  1. R. P. Date, N. O. Asia and M. East, Global and regional coal phase out requirements of the paris agreement: Insights from the IPCC special report on 1.5 C (2019).

  2. F. Wu, N. Huang, F. Zhang, L. Niu and Y. Zhang, Technol. Forecast Soc. Change, 159, 120198 (2020).

    Google Scholar 

  3. A. Kuriyama, K. Tamura and T. Kuramochi, Energy Policy, 130, 328 (2019).

    Google Scholar 

  4. R. Karacan, S. Mukhtarov, İ. Bariş, A. İşleyen and M. E. Yardimci, Energies, 14(10), 2947 (2021).

    CAS  Google Scholar 

  5. S. D. Oladipupo, H. Rjoub, D. Kirikkaleli and T. S. Adebayo, Int. J Renew. Energy Dev., 11(1) (2022).

  6. P. P. Edwards, V. L. Kuznetsov and W. I. David, Philos. Trans. Royal Soc. A, 365(1853), 1043 (2007).

    CAS  Google Scholar 

  7. A. Midilli, M. Ay, I. Dincer and M. A. Rosen, Renew. Sust. Energ. Rev., 9(3), 255 (2005).

    CAS  Google Scholar 

  8. T. N. Veziroğlu and S. Şahi, Energy Convers. Manag., 49(7), 1820 (2008).

    Google Scholar 

  9. K. Cheon and J. Kim, J. Korean Soc. Miner. Energy Resour. Eng., 57(6), 629 (2020).

    CAS  Google Scholar 

  10. S. K. Kar, A. S. K. Sinha, R. Bansal, B. Shabani and S. Harichandan, WIREs Energy Environ., 12(1), e457 (2022).

    Google Scholar 

  11. C. Philibert, Perspectives on a hydrogen strategy for the european union, Etudes del’Ifri, Ifri, 51(28), 49 (2020).

    Google Scholar 

  12. B. H. Park and D. H. Lee, Korean J. Chem. Eng., 39(4), 902 (2022).

    CAS  Google Scholar 

  13. A. Züttel, Naturwissenschaften, 91(4), 157 (2004).

    PubMed  Google Scholar 

  14. A. Züttel, Mater. Today, 6(9), 24 (2003).

    Google Scholar 

  15. U. Eberle, M. Felderhoff and F. Schueth, Angew. Chem., Int. Ed., 48(36), 6608 (2009).

    CAS  Google Scholar 

  16. S. Krasae-in, J. H. Stang and P. Neksa, Int. J. Hydrogen Energy, 35(10), 4524 (2010).

    CAS  Google Scholar 

  17. J. Andersson and S. Grönkvist, Int. J. Hydrogen Energy, 44(23), 11901 (2019).

    CAS  Google Scholar 

  18. S. Y Kim and D. K. Choi, Korean Ind. Chem. News, 21(3), 20 (2018).

    Google Scholar 

  19. U. Cardella, L. Decker, J. Sundberg and H. Klein, Int. J. Hydrogen Energy, 42(17), 12339 (2017).

    CAS  Google Scholar 

  20. S. Bischoff and L. Decker, AIP Conference Proc., 1218(1), 887 (2010).

    CAS  Google Scholar 

  21. A. Tarique, I. Dincer and C. Zamfirescu, Application of scroll expander in cryogenic process of hydrogen liquefaction, In: Progress in exergy, energy, and the environment, Springer, 91 (2014).

  22. R. F. Abdo, H. T. Pedro, R. N. Koury, L. Machado, C. F. Coimbra and M. P. Porto, Energy, 90, 1024 (2015).

    Google Scholar 

  23. K. D. Timmerhaus and T. M. Flynn, Cryogenic process engineering, Springer Science & Business Media (2013).

  24. T. K. Nandi and S. Sarangi, Int. J. Hydrogen Energy, 18(2), 131 (1993).

    CAS  Google Scholar 

  25. D. Berstad, G. Skaugen and 0. Wilhelmsen, Int. J. Hydrogen Energy, 46(11), 8014 (2021).

    CAS  Google Scholar 

  26. C. W. Park, K. S. Cha, S. G. Lee, C. G. Lee and K. H. Choi, J. Kor. Inst. Gas., 17(1), 67 (2013).

    Google Scholar 

  27. S. Krasae-In, J. H. Stang and P. Neksa, Int. J. Hydrogen Energy, 35(22), 12531 (2010).

    CAS  Google Scholar 

  28. S. Krasae-In, A. M. Bredesen, J. H. Stang and P. Neksa, Int. J. Hydrogen Energy, 36(1), 907 (2011).

    CAS  Google Scholar 

  29. S. Krasae-In, Int. J. Hydrogen Energy, 39(13), 7015 (2014).

    CAS  Google Scholar 

  30. G. Valenti and E. Macchi, Int. J. Hydrogen Energy, 33(12), 3116 (2008).

    CAS  Google Scholar 

  31. M. S. Sadaghiani and M. Mehrpooya, Int. J. Hydrogen Energy, 42(9), 6033 (2017).

    CAS  Google Scholar 

  32. M. Mehdizadeh-Fard, F. Pourfayaz and A. Maleki, Energy Rep., 7, 174 (2021).

    Google Scholar 

  33. H. Zhang, J. Baeyens, G. Caceres, J. Degreve and Y. Lv, Prog. Energy Combust. Sci., 53, 1 (2016).

    Google Scholar 

  34. H. Ansarinasab, M. Mehrpooya and A. Mohammadi, J. Clean Prod., 144, 248 (2017).

    CAS  Google Scholar 

  35. M. Mehrpooya, M. S. Sadaghiani and N. Hedayat, Int. J. Energy Res., 44(3), 1636 (2020).

    CAS  Google Scholar 

  36. M. Asadnia and M. Mehrpooya, Int. J. Hydrogen Energy, 42(23), 15564 (2017).

    CAS  Google Scholar 

  37. W. Noh, S. Park, J. Kim and I. Lee, Int. J. Energy Res., 46(9), 12926 (2022).

    CAS  Google Scholar 

  38. D. Lee, D. Q. Gbadago, Y. Jo, G. Hwang, Y Jo, R. Smith and S. Hwang, Energy Convers. Manag., 245, 114620 (2021).

    CAS  Google Scholar 

  39. D. Peng and D. B. Robinson, Ind. Eng. Chem., 15(1), 59 (1976).

    CAS  Google Scholar 

  40. R. D. McCarty, J. Hord and H. M. Roder, Selected properties of hydrogen (engineering design data), US Department of Commerce, National Bureau of Standards (1981).

  41. M. Mehrpooya, M.M.M. Sharifzadeh and M.A. Rosen, Energy, 90, 2047 (2015).

    CAS  Google Scholar 

  42. M. Picon-Nunez, G. T. Polley and M. Medina-Flores, Appl. Therm. Eng., 22(14), 1643 (2002).

    Google Scholar 

  43. A. Naquash, M. A. Qyyum, S. Min, S. Lee and M. Lee, Energy Convers. Manag., 251, 114947 (2022).

    CAS  Google Scholar 

  44. A. Giampaolo, Compressor handbook: Principles and practice, CRC Press (2020).

  45. S. M. Yahya, Turbines compressors and fans, Tata McGraw-Hill Education (2010).

  46. E. Ilisca, Prog. Surf. Sci., 41(3), 217 (1992).

    CAS  Google Scholar 

  47. S. Gursu, M. Lordgooei, S. A. Sherif and T. N. Veziroglu, Int. J. Hydrogen Energy, 17(3), 227 (1992).

    CAS  Google Scholar 

  48. A. Riaz, M. A. Qyyum, A. Hussain and M. Lee, Int. J. Hydrogen Energy, In Press (2022).

  49. I. Dincer and M. A. Rosen, Thermal energy storage: Systems and applications, John Wiley & Sons (2021).

  50. I. J. Karassik, J. P. Messina, P. Cooper and C. C. Heald, Pump handbook, McGraw-Hill Education (2008).

  51. H. Mahabadipour and H. Ghaebi, Appl. Therm. Eng., 50(1), 771 (2013).

    CAS  Google Scholar 

  52. M. Kanoglu, Int. J. Energy Res., 26(8), 763 (2002).

    CAS  Google Scholar 

  53. E. Connelly, M. Penev, A. Elgowainy and C. Hunter, Current status of hydrogen liquefaction costs, DOE Hydrogen and Fuel Cells Program Record., 1–10 (2019).

  54. M. Jeong, E. Cho, H. Byun and C. Kang, Korean J. Chem. Eng., 38, 380 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry, and Energy (No. 20227310100010) and by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (No. 21ATOG-C162087-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seok Goo Lee or Yeonsoo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.H., Yu, S.Y., Yeom, S.Y. et al. Exergy destruction improvement of hydrogen liquefaction process considering variations in cooling water temperature. Korean J. Chem. Eng. 40, 1839–1849 (2023). https://doi.org/10.1007/s11814-023-1480-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1480-5

Keywords

Navigation