Skip to main content
Log in

Synergistic and sustainable activation of peroxymonosulfate by nanoscale MWCNTs-CuFe2O4 as a magnetic heterogeneous catalyst for the efficient removal of levofloxacin

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Nanoscale CuFe2O4 was anchored on the surface of multiwalled carbon nanotubes (MWCNTs) as a magnetic heterogeneous catalyst to achieve efficient and sustainable activation of peroxymonosulfate and degradation of levofloxacin through the synergistic effect of the above materials. The catalyst properties were characterized by a series of detection techniques. It was found that the mass ratio of MWCNTs-CuFe2O4, operational parameters and common interfering substances influenced the levofloxacin removal efficiency to a certain extent. This study sheds light on the ultraefficient removal of levofloxacin with the MWCNTs-CuFe2O4(1:3)/peroxymonosulfate system, which has advantages over other reaction systems. More importantly, we propose two pathways of peroxymonosulfate activation, including free radicals and nonfree radicals, in which superoxide radicals and signal oxygen are the main active species. In addition, we observed that the MWCNT surface groups contributed to the peroxymonosulfate activation processes with the generation of extra reactive species. The Fe3+/Fe2+ and Cu2+/Cu+ redox cycles are conducive to the continuous generation of active species. The results of the catalyst recycling test, metal ion leaching test and mineralization test suggested that the fabricated catalyst had excellent catalytic stability, sustainability and mineralization ability. In addition, twenty-one intermediates were detected using liquid chromatography-mass spectrometry, and three possible degradation pathways were further proposed. MWCNTs-CuFe2O4 makes up for the shortcomings of transition metals and single carbon materials in activating peroxymonosulfate to treat wastewater and have significant potential to improve the separation and catalytic capacity of the catalyst. This study provides new ideas for the design of high-performance multiphase catalysts for applications in catalytic oxidation and proposes new insights into the mechanistic investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Y. Yang, M. Y. Huang, S. S. Wang, X. Y. Mao, Y. M. Hu and X. Chen, Water, 12, 3583 (2020).

    Article  CAS  Google Scholar 

  2. Y. W. Zhong, K. Shih, Z. H. Diao, G. Song, M. H. Su, L. A. Hou, D. Y. Chen and L. J. Kong, Chem. Eng. J., 417, 129225 (2021).

    Article  CAS  Google Scholar 

  3. J. Zhao, P. F. Xiao, S. Han, M. Zulhumar and D. D. Wu, Water Sci. Technol., 85, 645 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. A. Czyrski, K. Anusiak and A. Teżyk, Sci. Rep., 9, 1 (2019).

    Article  CAS  Google Scholar 

  5. X. J. Wen, C. G. Niu, H. Guo, L. Zhang, C. Liang and G. M. Zeng, J. Catal., 358, 211 (2018).

    Article  CAS  Google Scholar 

  6. R. Anjali and S. Shanthakumar, J. Environ. Manage., 246, 51 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. S. Han and P. F. Xiao, Sep. Purif. Technol., 287, 120533 (2022).

    Article  CAS  Google Scholar 

  8. Q. R. Wang, Y. X. Shi, S. Y. Lv, Y. Liang and P. F. Xiao, RSC Adv., 11, 18525 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P. F. Xiao, L. An and D. D. Wu, New Carbon Mater., 35, 667 (2020).

    Article  CAS  Google Scholar 

  10. L. An and P. F. Xiao, RSC Adv., 10, 19401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. R. B. Li, M. X. Cai, Z. J. Xie, Q. X. Zhang, Y. Q. Zeng, H. J. Liu and W. Y. Lv, Appl. Catal. B, 244, 974 (2019).

    Article  CAS  Google Scholar 

  12. A. Lassoued, M. Ben Hassine, F. Karolak, B. Dkhil, S. Ammar and A. Gadri, J. Mater. Sci. Mater. Electron., 28, 18857 (2017).

    Article  CAS  Google Scholar 

  13. K. Atacan, N. Güy and M. Özacar, J. Colloids Interface Sci. Commun., 40, 100359 (2021).

    Article  CAS  Google Scholar 

  14. K. Atacan, J. Alloys Compd., 791, 391 (2019).

    Article  CAS  Google Scholar 

  15. Z. Q. Yang, Y. Li, X. Y. Zhang, X. D. Cui, S. He, H. Liang and A. Ding, Chem. Eng. J., 384, 123319 (2020).

    Article  CAS  Google Scholar 

  16. H. Pourzamani, E. Jafari, M. Rozveh, H. Mohammadi, M. Rostami and N. Mengelizadeh, Desalin. Water Treat., 167, 156 (2019).

    Article  CAS  Google Scholar 

  17. K. Zhu, Q. Bin, Y. Q. Shen, J. Huang, D. D. He and W. J. Chen, Chem. Eng. J., 402, 126090 (2020).

    Article  CAS  Google Scholar 

  18. B. M. Liu, W. B. Song, H. X. Wu, Z. Y. Liu, Y. J. Sun, Y. H. Xu and H. L. Zheng, Chem. Eng. J., 398, 125498 (2020).

    Article  CAS  Google Scholar 

  19. L. K. Wu, H. Wu, H. B. Zhang, H. Z. Cao, G. Y. Hou, Y. P. Tang and G. Q. Zheng, Chem. Eng. J., 334, 1808 (2018).

    Article  CAS  Google Scholar 

  20. P. Laokul, V. Amornkitbamrung, S. Seraphin and S. Maensiri, Curr. Appl. Phys., 11, 101 (2011).

    Article  Google Scholar 

  21. Y. B. Wang, H. Y. Zhao, M. F. Li, J. Q. Fan and G. H. Zhao, Appl. Catal., B, 147, 534 (2014).

    Article  CAS  Google Scholar 

  22. A. Dandia, A. K. Jain and S. Sharma, RSC Adv., 3, 2924 (2013).

    Article  CAS  Google Scholar 

  23. A. Samadi, R. Ahmadi and S. M. Hosseini, Org. Electron., 75, 105405 (2019).

    Article  Google Scholar 

  24. E. M. Elsehly, N. G. Chechenin, A. V. Makunin, H. A. Motaweh, K. A. Bukunov and E. G. Leksina, J. Nanomater., 6, 2 (2016).

    Google Scholar 

  25. Z. Y. Lu, M. He, L. L. Yang, Z. F. Ma, L. Yang, D. D. Wang, Y. S. Yan, W. D. Shi, Y. Liu and Z. F. Hua, RSC Adv., 5, 47820 (2015).

    Article  CAS  Google Scholar 

  26. G. H. Liu, C. Li, B. A. Stewart, L. Liu, M. Zhang, M. Y. Yang and K. F. Lin, Chem. Eng. J., 399, 125722 (2020).

    Article  CAS  Google Scholar 

  27. S. Z. Wang and J. L. Wang, Chem. Eng. J., 356, 350 (2019).

    Article  CAS  Google Scholar 

  28. J. Kang, X. J. Duan, L. Zhou, H. Q. Sun, M. O. Tade and S. B. Wang, Chem. Eng. J., 288, 399 (2016).

    Article  CAS  Google Scholar 

  29. S. M. Li, B. Wang, J. H. Liu and M. Yu, Electrochim. Acta, 129, 33 (2014).

    Article  CAS  Google Scholar 

  30. P. X. Li, R. G. Ma, Y. Zhou, Y. F. Chen, Z. Z. Zhou, G. H. Liu, G. H. Peng and J. C. Wang, RSC Adv., 5, 44476 (2015).

    Article  CAS  Google Scholar 

  31. N. Kumar, A. Kumar, G. M. Huang, W. W. Wu and T. Y. Yseng, Appl. Surf. Sci., 433, 1100 (2018).

    Article  CAS  Google Scholar 

  32. H. Y. Gao, J. J. Xiang and Y. Cao, Appl. Surf. Sci., 413, 351 (2017).

    Article  CAS  Google Scholar 

  33. A. Manikandan, M. Durka, S. A. Antony and J. Supercond, Nov. Magn., 28, 2047 (2015).

    Article  CAS  Google Scholar 

  34. A. Manikandan, M. Durka and S. A. Antony, J. Supercond. Nov. Magn., 27, 2841 (2014).

    Article  CAS  Google Scholar 

  35. Y. L. Zou, Z. Y. Li, Y. L. Liu, J. L. Duan and B. Long, J. Alloys Compd., 820, 153085 (2020).

    Article  CAS  Google Scholar 

  36. W. L. Guo, Z. H. Zhang, H. Lin and L. Cai, Mol. Catal., 492, 111011 (2020).

    Article  CAS  Google Scholar 

  37. S. Madihi-Bidgoli, S. Asadnezhad, A. Yaghoot-Nezhad and A. Hassani, J. Environ. Chem. Eng., 9, 106660 (2021).

    Article  CAS  Google Scholar 

  38. X. L. Li, H. J. Lu, Y. Zhang and F. He, Chem. Eng. J., 316, 893 (2017).

    Article  CAS  Google Scholar 

  39. T. J. Al-Musawi, G. McKay, P. Rajiv, N. Mengelizadeh and D. Balarak, J. Photoch. Photobio., A 424, 113617 (2022).

    Article  CAS  Google Scholar 

  40. B. Kakavandi, S. Alavi, F. Ghanbari and M. Ahmadi, Chemosphere, 287, 132024 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. M. Alhamd, T. Tabatabaie, I. Parseh, F. Amiri and N. Mengelizadeh, Environ. Sci. Pollut. Res., 28, 57099 (2021).

    Article  CAS  Google Scholar 

  42. T. j. Al-Musawi, P. Rajiv, N. Mengelizadeh, F. S. Arghavan and D. Balarak, J. Mol. Liq., 337, 116470 (2021).

    Article  CAS  Google Scholar 

  43. X. J. Wen, Q. Lu, X. X. Lv, J. Sun, J. Guo, Z. H. Fei and C. G. Niu, J. Hazard. Mater., 385, 121508 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. M. M. Amini and N. Mengelizadeh, Environ. Sci. Pollut. Res., 27, 45324 (2020).

    Article  Google Scholar 

  45. X. L. Zeng, J. Chen, R. J. Qu, M. B. Feng and Z. Y. Wang, Chem. Eng. J., 319, 98 (2017).

    Article  CAS  Google Scholar 

  46. M. J. Huang, S. S. Peng, W. Xiang, C. Wang, X. H. Wu, J. Mao and T. Zhou, Chem. Eng. J., 429, 132372 (2022).

    Article  CAS  Google Scholar 

  47. C. H. Shen, Y. Chen, X. J. Xu, X. Y. Li, X. J. Wen, Z. T. Liu, R. Xing, H. Guo and Z. H. Fei, J. Hazard. Mater., 416, 126217 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Y. M. Qi, R. J. Qu, J. Q. Liu, J. Chen, G. Al-Basher, N. Alsultan, Z. Y. Wang and Z. L. Huo, Chemosphere, 237, 124484 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. J. Y. Yao, Y. Yu, R. J. Qu, J. Chen, Z. L. Huo, F. Zhu and Z. Y. Wang, Environ. Sci. Technol., 54, 9052 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Y. Y. Wang, L. Yao, X. Liu, J. Cheng, W. Liu, T. Liu, M. M. Sun, L. J. Zhao, F. Ding, Z. W. Lu, P. Zou, X. X. Wang, Q. B. Zhao and H. B. Rao, Biosens. Bioelectron., 142, 111483 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. L. C. Yue, S. G. Zhang, H. Q. Zhao, F. Yu, M. Wang, L. L. An, X. D. Zhang and J. Mi, Solid State Ion., 329, 15 (2019).

    Article  CAS  Google Scholar 

  52. X. F. Yu, G. Y. Chen, Y. Z. Wang, J. W. Liu, K. Pei, Y. H. Zhao, W. B. You, L. Wang, J. Zhang, L. S. Xing, J. J. Ding, G. Z. Ding, M. Wang and R. C. Che, Nano Res., 13, 437 (2020).

    Article  CAS  Google Scholar 

  53. Z. X. Wang, Y. F. Han, W. L. Fan, Y. X. Wang and L. H. Huang, Sep. Purif. Technol., 278, 119558 (2021).

    Article  Google Scholar 

  54. B. M. Liu, W. B. Song, H. X. Wu, Z. Y. Liu, Y. Teng, Y. J. Sun, Y. H. Xu and H. L. Zheng, Chem. Eng. J., 398, 125498 (2020).

    Article  CAS  Google Scholar 

  55. B. M. Liu, W. B. Song, W. W. Zhang, X. Zhang, S. L. Pan, H. X. Wu, Y. J. Sun and Y. H. Xu, Sep. Purif. Technol., 273, 118705 (2021).

    Article  CAS  Google Scholar 

  56. R. Bai, W. F. Yan, Y. Xiao, S. Q. Wang, X. C. Tian, J. P. Li, X. F. Xiao, X. Q. Lu and F. Zhao, Chem. Eng. J., 397, 125501 (2020).

    Article  CAS  Google Scholar 

  57. W. T. Tan, Y. Ruan, Z. H. Diao, G. Song, M. H. Su, L. A. Hou, D. Y. Chen, L. J. Kong and H. M. Deng, Chemosphere, 280, 130626 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. X. L. Yang, X. Y. Xie, S. Q. Li, W. X. Zhang, X. D. Zhang, H. X. Chai and Y. M. Huang, J. Hazard. Mater., 419, 126360 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Y. W. Zhong, K. Shih, Z. H. Diao, G. Song, M. H. Su, L. A. Hou, D. Y. Chen and L. J. Kong, Chem. Eng. J., 417, 129225 (2021).

    Article  CAS  Google Scholar 

  60. J. B. Zhou, W. Liu and W. Q. Cai, Sci. Total Environ., 696, 133962 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. J. Y. Liu, Z. L. Li, M. Wang, C. Y. Jin, J. Kang, Y. W. Tang and S. Y. Li, Sep. Purif. Technol., 274, 118666 (2021).

    Article  CAS  Google Scholar 

  62. Q. Y. Zhang, X. Q. Sun, Y. Dang, J. J. Zhu, Y. Zhao, X. X. Xu and Y. Z. Zhou, J. Hazard. Mater., 424, 127651 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Heilongjiang Provincial Natural Science Foundation of China (LH2019D002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Xiao.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2022_1332_MOESM1_ESM.pdf

Synergistic and sustainable activation of peroxymonosulfate by nanoscale MWCNTs-CuFe2O4 as a magnetic heterogeneous catalyst for the efficient removal of levofloxacin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Xiao, P. Synergistic and sustainable activation of peroxymonosulfate by nanoscale MWCNTs-CuFe2O4 as a magnetic heterogeneous catalyst for the efficient removal of levofloxacin. Korean J. Chem. Eng. 40, 1401–1417 (2023). https://doi.org/10.1007/s11814-022-1332-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1332-8

Keywords

Navigation