Skip to main content
Log in

Kinetics of pentachlorophenol co-metabolism removal by micro-aeration sequencing batch reactor process

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Four carbon sources (including trehalose, glucose, acetic acid, and yeast extract) were used as the co-metabolic matrix of pentachlorophenol (PCP). The effect of the carbon sources on the process of acclimatization and degradation of PCP was investigated. The acclimatization rate of carbon sources with different substrates, the activities of microbial enzymes in the co-metabolism process, and the control of co-metabolism reaction conditions were evaluated. The kinetic model of co-metabolic degradation of PCP in micro aerated sequencing batch reactor (SBR) was established based on the Monod equation. The model was applied to fit the operating conditions of the micro aerated SBR process in this study. The experimental results showed that the type and concentration of metabolic matrix greatly influenced the degradation rate of PCP, and its trehalose, glucose, and acetic acid enhanced the degradation of PCP. In particular, the strengthening effect of trehalose was pronounced. When trehalose was used as a co-metabolic carbon source, the time required for PCP degradation to a predetermined degree was shortened to one-fifth of the original, PCP removal rate exceeded 95%. At the same time, yeast extract inhibited the biodegradation of PCP when it was used as an additional matrix carbon source. After the co-metabolism carbon source was added to the system, the proliferation rate of the microorganism was increased, and the key enzymes of PCP degradation were induced in the system. When the co-metabolic carbon source concentration was high, it accelerated active enzymes’ induction and maintained high activity; 2,3,5-triphenyltetrazolium chloride-electron transport system (TTC-ETS) activity reached about 7.6 mgTF/(gTSS·H), and 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl Tetrazolium chloride-electron transport system (INT-ETS) activity reached 63.5 mgINTF/(gTSS·H). When the concentration of co-metabolism carbon source was extremely high, the co-degradation of toxic organic compounds was inhibited, leading to a decrease in the co-degradation rate. The kinetic model optimized the co-metabolism substrate. The degradation rate of PCP was increased by 54.9% by micro-aeration-co-metabolism. The kinetic model was used to fit the microaerobic reaction process of micro aeration SBR. The relevant result was in agreement with the experimental result by 97.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. L. Wang, H. Lu, T. H. Song and K. Zhao, Korean J. Chem. Eng., 36, 411 (2019).

    Article  CAS  Google Scholar 

  2. X. L. Wang, X. Y. Zhang and H. Lu, Korean J. Chem. Eng., 37, 249 (2020).

    Article  CAS  Google Scholar 

  3. M. H. Muhamad, S. R. S. Abdullah, H. A. Hasan, S. N. H. A. Bakar, S. B. Kurniawan and N. Ismail, J. Water Process Eng., 43, 102243 (2021).

    Article  Google Scholar 

  4. F. Zheng, J. Wang, R. Xiao, W. B. Chai, D. F. Xing, and H. J. Lu, J. Environ. Pollut., 273, 116436 (2021).

    Article  CAS  Google Scholar 

  5. M. Long, Z. E. Ilhan, S. Q. Xia, C. Zhou and B. E. Rittmann, Water Res., 144, 134 (2018).

    Article  CAS  Google Scholar 

  6. M. D. Khan, N. Khan, A. S. Nizami, M. Rehan, S. Sabir and M. Z. Khan, Bioresour. Technol., 238, 492 (2017).

    Article  CAS  Google Scholar 

  7. C. H. Yang and C. M. Lee, J. Hazard. Mater., 152, 159 (2008).

    Article  CAS  Google Scholar 

  8. G. B. Zhu, Y. Z. Peng, S. Y. Wang, S. Y. Wu and B. Ma, Chem. Eng. J., 131, 319 (2007).

    Article  CAS  Google Scholar 

  9. W. Wang, S. Wang, J. Zhang, Z. H. Hu, X. D. Zhang and J. M. Sierra, Int. Biodeter. Biodegr, 113, 126 (2016).

    Article  CAS  Google Scholar 

  10. G. P. Udayakumar, S. Muthusamy, B. Selvaganesh, N. Sivarajasekar, K. Rambabu, S. Sivamani, N. Sivakumar, J. P. Maran and A. Hosseini-Bandegharaei, Biotechnol. Adv., 52, 107815 (2021).

    Article  CAS  Google Scholar 

  11. G.P. Udayakumar, S. Muthusamy, B. Selvaganesh, N. Sivarajasekar, K. Rambabu, F. Banat, S. Sivamani, N. Sivakumar, A. Hosseini-Bandegharaei and P. L. Show, J. Environ. Chem. Eng, 9, 105322 (2021).

    Article  CAS  Google Scholar 

  12. V. J. Sharavanan, M. Sivaramakrishnan, N. Sivarajasekar, N. Senthilrani, R. Kothandan, N. Dhakal, S. Sivamani, P. L. Show, M. R. Awual and M. Naushad, Environ. Chem. Lett., 18, 325 (2020).

    Article  CAS  Google Scholar 

  13. S. Muthusaravanan, N. Sivarajasekar, J. S. Vivek, T. Paramasivan, M. Naushad, J. Prakashmaran, V. Gayathri and O. K. Al-Duaij, Environ. Chem. Lett., 16, 1339 (2018).

    Article  CAS  Google Scholar 

  14. American Public Health Association (APHA), Standard method for examination of water and wastewater, 22nd edn, APHA, AWWA, WPCF, Washington (2012).

    Google Scholar 

  15. L. Wennrich, P. Popp and M. Möder, Anal. Chem., 72, 546 (2000).

    Article  CAS  Google Scholar 

  16. J. H. Wang, L. Wang, E. Y. Cui and H. Lu, Korean J. Chem. Eng., 35, 1274 (2018).

    Article  CAS  Google Scholar 

  17. D. M. Angelucci, D. Piscitelli and M. C. Tomei, Process Saf. Environ., 131, 105 (2019).

    Article  Google Scholar 

  18. X. Y. Jiang, G. M. Zeng, D. L. Huang, Y. Chen, F. Liu, G. H. Huang, J. B. Li, B. D. Xi and H. L. Liu, World J. Microb. Biot., 22, 909 (2006).

    Article  CAS  Google Scholar 

  19. A. K. Abdessalem, N. Oturan, N. Bellakhal, M. Dachraoui and M. A. Oturan, Appl. Catal. B-Environ., 78, 334 (2008).

    Article  CAS  Google Scholar 

  20. F. A. Rodríguez, J. M. Poyatos, P. Reboleiro-Rivas, F. Osorio, J. González-Lópeza and E. Hontoria, Bioresource Technol., 102, 6013 (2011).

    Article  Google Scholar 

  21. F. Garcia-Ochos and E. Gomez, Biotechnol. Adv., 27, 153 (2009).

    Article  Google Scholar 

  22. D. D. A. V. Marques, B. R. Torres, A. L. F. Porto, A. Pessoa-Júnior and A. Converti, Biochem. Eng. J., 47, 122 (2009).

    Article  Google Scholar 

  23. L. Wan, M. Alvarez-Cuenca, S. R. Upreti and A. Lohi, Chem. Eng. Process., 49, 2 (2010).

    Article  CAS  Google Scholar 

  24. X. W. Zhang, Biochem. Eng. J., 45, 41 (2009).

    Article  Google Scholar 

  25. J. Li, L. P. Zhu, Y. Y. Xu and B. K. Zhu, J. Membr. Sci., 362, 47 (2010).

    Article  CAS  Google Scholar 

  26. R. Mineta, Z. Salehi, H. Yoshikawa and Y. Kawase, Biochem. Eng. J., 53, 266 (2011).

    Article  CAS  Google Scholar 

  27. M. H. Muhamad, S. R. S. Abdullah, H. A. Hasan and S. N. H. A. Bakar, J. Water Process Eng., 37, 101522 (2020).

    Article  Google Scholar 

  28. J. Clarke, H. C. Wu, L. Jayasinghe, A. Patel, S. Reid and H. Bayley, Nat. Nanotechnol., 4, 265 (2009).

    Article  CAS  Google Scholar 

  29. J. Wang, Z. N. Yang, H. Wang, S. R. Wu, H. Lu and X. G. Wang, Sci. Total Environ., 758, 143670 (2021).

    Article  CAS  Google Scholar 

  30. G. Tang, X. L. Li, Z. Wang, K. Wang, B. R. Li, C. X. Liu and X. Z. Zheng, J. Clean. Prod., 317, 128448 (2021).

    Article  CAS  Google Scholar 

  31. S. K. Toh, J. H. Tay, B. Y. P. Moy, V. Ivanov and S. T. L. Tay, Appl. Microbiol. Biotechnol., 60, 687 (2003).

    Article  CAS  Google Scholar 

  32. H. X. Lan, Study on simultaneously aerobic-anaerobic degradation of pentachlorophenol (PCP) in wastewater with microaerobic granulars, South China University of Technology, Guangzhou (2005).

    Google Scholar 

  33. S. F. Yang, J. Tay and Y. Liu, J. Biotechnol., 106, 77 (2003).

    Article  CAS  Google Scholar 

  34. J. Jose and L. Philip, J. Environ. Manage., 286, 112202 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 51678272, No. 52170034) and the Department of Science and Technology of Jilin Province (No. 20190303085SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xie, G., Qi, X. et al. Kinetics of pentachlorophenol co-metabolism removal by micro-aeration sequencing batch reactor process. Korean J. Chem. Eng. 39, 1507–1516 (2022). https://doi.org/10.1007/s11814-021-1022-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1022-y

Keywords

Navigation