Skip to main content
Log in

A new process of acidic hydrolysis of residual chlorosilane liquid for the preparation of silica and hydrochloric acid

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We propose a novel process for the preparation of silica and concentrated hydrochloric acid using chlorosilane residual liquid originating from the polysilicon production process. The process was designed and optimized after conducting pilot plant tests. The effects of circulating acid concentration, flow rate, chlorosilane residual liquid treatment load and other factors on silica products were studied. The results showed that the circulating acid flowrate can effectively control the formation of gel, and the amount of chlorosilane residual liquid has significant influence on the hydrolysis efficiency and operation of the hydrolysis tower. The prepared silica was characterized using XRD, XRF, FT-IR, SEM, DLS, TG-MS and N2 adsorption/desorption experiments. The results indicated that silica consisted of amorphous particles, which were spherical, had surface hydroxyl, and showed heterogeneous distribution. The average particle size was 50-80 μm and had high specific surface area (565.049 m2g−1), large pore volume (0.449 cm3g−1), and a narrow pore size distribution (3.419 nm). The new technology provides a simple, efficient and environmentally friendly way for treating chlorosilane residual liquid, as well as a cost-effective method for the preparation of silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Alivisatos, J. Phys. Chem., 100, 13226 (1996).

    Article  CAS  Google Scholar 

  2. W.W. Yu, J. C. Falkner, B. S. Shih and V. L. Colvin, Chem. Mater., 16, 3318 (2004).

    Article  CAS  Google Scholar 

  3. M. Su, Korean J. Chem. Eng., 34, 484 (2017).

    Article  CAS  Google Scholar 

  4. E. Pihan, A. Slaoui, P.R. I. Cabarrocas and A. Focsa, Thin Solid Films, 451, 328 (2004).

    Article  Google Scholar 

  5. Y. Ding, R. Yamada, R. Gresback, S. Zhou, X.D. Pi and T. Nozaki, J. Phys. D: Appl. Phys., 47, 9 (2014).

    Google Scholar 

  6. O. Yasar-Inceoglu, T. Lopez, E. Farshihagro and L. Mangolini, Nanotechnology, 23, 10 (2012).

    Article  Google Scholar 

  7. J. Zhang, S. Chen, H. Zhang, S. Zhang, X. Yao and Z. Shi, RSC Adv., 6, 12061 (2016).

    Article  CAS  Google Scholar 

  8. C.M. Carbonaro, R. Corpino, P.C. Ricci, M. Salis and A. Anedda, J. Mater. Sci., 48, 4452 (2013).

    Article  CAS  Google Scholar 

  9. C. Chen, K. S. You, J. W. Ahn and W. S. Ahn, Korean J. Chem. Eng., 27, 1010 (2010).

    Article  CAS  Google Scholar 

  10. B.G. Gribov and K.V. Zinov’ev, Inorg. Mater., 39, 653 (2003).

    Article  CAS  Google Scholar 

  11. X.Z. Chen, D. P. Shi, X. Gao and Z. H. Luo, Powder Technol., 205, 276 (2011).

    Article  CAS  Google Scholar 

  12. E. Robert and T. Zijlema, US Patent, 7, 943, 109 (2011).

    Google Scholar 

  13. A. F. B. Braga, S.P. Moreira, P.R. Zampieri, J.M.G. Bacchin and P. R. Mei, Sol. Energy Mater. Sol. Cells, 92, 418 (2008).

    Article  CAS  Google Scholar 

  14. D. Lynch, Jom, 61, 41 (2009).

    Article  CAS  Google Scholar 

  15. S. Kirii, M. Narukawa and H. Takesue, US Patent, 6, 846, 473 (2005).

    Google Scholar 

  16. N. Masuda and N. Tachino, US Patent, 8, 197, 783 (2012).

    Google Scholar 

  17. W.C. Breneman, EP Patent, 1622831 A1 (2006).

    Google Scholar 

  18. L. Fabry, U. Paetzold and M. Stepp, US Patent, 8, 557, 210 (2013).

    Google Scholar 

  19. K. Hesse and F. Schreieder, US Patent, 7708970 B2 (2010).

    Google Scholar 

  20. K. Naumann, G. Zon and K. Mislow, J. Am. Chem. Soc., 91, 7012 (2002).

    Article  Google Scholar 

  21. W.M. Nelson, P. Naidoo and D. Ramjugernath, J. Chem. Thermodyn., 91, 420 (2015).

    Article  CAS  Google Scholar 

  22. G. Szabo, D. Szieberth and L. Nyulaszi, Struct. Chem., 26, 231 (2015).

    Article  CAS  Google Scholar 

  23. K. Ruff, US Patent, 5, 080, 804 (1992).

    Google Scholar 

  24. R.A. Burgie and O. A. Heng, US Patent, 5, 118, 486 (1992).

    Google Scholar 

  25. S. Ferron, J. Kelly and R. Vermeulen, US Patent, 7569193 B2 (2009).

  26. L. Stephen Michael, US Patent, 7, 736, 614 (2010).

    Google Scholar 

  27. W.C. Breneman and D. M. Reeser, US Patent, 4, 690, 810 (1987).

    Google Scholar 

  28. J. E. Herman, US Patent, 6, 090, 360 (2000).

    Google Scholar 

  29. L.M. Coleman and W. Tambo, US Patent, 4519999 A (1985).

    Google Scholar 

  30. X. L. Zhang and Y. L. Fan, J. Non-Cryst. Solids., 358, 337 (2012).

    Article  CAS  Google Scholar 

  31. P.R. Pinto, L. C. Mendes, M. L. Dias and C. Azuma, Colloid. Polym. Sci., 284, 529 (2006).

    Article  CAS  Google Scholar 

  32. A. Fidalgo, R. Ciriminna, L. M. Ilharco and M. Pagliaro, Chem. Mater., 17, 6686 (2005).

    Article  CAS  Google Scholar 

  33. N. Pijarn, A. Jaroenworaluck, W. Sunsaneeyametha and R. Stevens, Powder Technol., 203, 462 (2010).

    Article  CAS  Google Scholar 

  34. T. Uchino, A. Aboshi, S. Kohara, Y. Ohishi, M. Sakashita and K. Aoki, Phys. Rev. B., 69, (2004).

  35. S. Lee and R. Ha, Korean J. Chem. Eng., 33, 2469 (2016).

    Article  CAS  Google Scholar 

  36. F. Yan, J.G. Jiang, S.C. Tian, Z.W. Liu, J. Shi, K.M. Li, X. J. Chen and Y.W. Xu, Acs Sustain. Chem. Eng., 4, 4654 (2016).

    Article  CAS  Google Scholar 

  37. S. Cerveny, G. A. Schwartz, J. Otegui, J. Colmenero, J. Loichen and S. Westermann, J. Phys. Chem. C., 116, 24340 (2012).

    Article  CAS  Google Scholar 

  38. M. Su, H. J. Su, B. L. Du, X.T. Li, G.Y. Ren and S.D. Wang, Korean J. Chem. Eng., 32, 852 (2015).

    Article  CAS  Google Scholar 

  39. F. Adam, K. Kandasamy and S. Balakrishnan, J. Colloid Interface Sci., 304, 137 (2006).

    Article  CAS  Google Scholar 

  40. J.M. Kim, S.M. Chang, S.M. Kong, K.S. Kim, J. Kim and W.S. Kim, Ceram. Int., 35, 1015 (2009).

    Article  CAS  Google Scholar 

  41. S. Ek, A. Root, M. Peussa and L. Niinisto, Thermochim. Acta, 379, 201 (2001).

    Article  CAS  Google Scholar 

  42. X. J. Chen, J.G. Jiang, F. Yan, S.C. Tian and K.M. Li, RSC Adv., 4, 8703 (2014).

    Article  CAS  Google Scholar 

  43. P.K. Jal, M. Sudarshan, A. Saha, S. Patel and B. K. Mishra, Colloids Surf., A, 240, 173 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Huang, B., Ma, Q. et al. A new process of acidic hydrolysis of residual chlorosilane liquid for the preparation of silica and hydrochloric acid. Korean J. Chem. Eng. 34, 1793–1800 (2017). https://doi.org/10.1007/s11814-017-0093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0093-2

Keywords

Navigation