Skip to main content
Log in

Changing the environment of mesoporous silica to investigate the origin of UV and visible photoluminescence of surface centers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The surface-related emission properties of mesoporous silica are investigated by changing the environment surrounding the silica surface, that is by filling the pores of the transparent matrix with different media such as air and nitrogen, or under high vacuum conditions. The interaction of the emitting surface centers with the filling media induces large modifications on the surface of silica matrices and modifies the optical features of the emitting centers. The aim of the paper is to assign the origin of the gathered UV and visible emissions: the modifications induced by the different treatments support the involvement of OH species in the formation of the surface centers responsible of both the emissions and can be rationalized within the framework of two different dehydration reaction schemes previously proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Makimura D, Metin C, Kabashima T, Matsuoka T, Nguyen QP, Miranda CR (2010) J Mater Sci 45:5084. doi:10.1007/s10853-010-4390-y

    Article  CAS  Google Scholar 

  2. Ma X, Sun H, Yu P (2008) J Mater Sci 43:887. doi:10.1007/s10853-007-2189-2

    Article  CAS  Google Scholar 

  3. Böcking D, Fiedler J, Brenner RE, Hüsing N (2009) J Mater Sci 44:6786. doi:10.1007/s10853-009-3565-x

    Article  Google Scholar 

  4. Mihai M, Drăgan ES (2011) J Mater Sci 46:5723. doi:10.1007/s10853-011-5526-4

    Article  CAS  Google Scholar 

  5. Carbonaro CM, Ricci PC, Grandi S, Marceddu M, Corpino R, Salis M, Anedda A (2012) RSC Adv 2:1905. doi:10.1039/c2ra00830k

    Article  CAS  Google Scholar 

  6. Li Z, Johnson MC, Sun M, Ryan ET, Earl DJ, Maichen W, Martin JL, Li S, Lew CM, Wang J, Deem MW, Davis ME, Yan Y (2006) Angew Chem Int Ed 45:6329. doi:10.1002/anie.200602036

    Article  CAS  Google Scholar 

  7. Tong LM, Gattass RR, Ashcom JB, He SL, Lou JY, Shen MY, Maxell I, Mazur E (2003) Nature 26:816. doi:10.1038/nature02193

    Article  Google Scholar 

  8. Tong L, Lou J, Gattass RR, He S, Chen X, Liu L, Mazur E (2005) Nano Lett 5:259. doi:10.1021/nl0481977

    Article  CAS  Google Scholar 

  9. Jin L, Wang J, Cao G, Choy WCH (2008) Phys Lett A 372:4622. doi:10.1016/j.physleta.2008.04.036

    Article  CAS  Google Scholar 

  10. Abe J, Hirano N, Tsuchiya N (2012) J Mater Sci 47:7971. doi:10.1007/s10853-012-6685-7

    Article  CAS  Google Scholar 

  11. Anedda A, Carbonaro CM, Clemente F, Corpino R, Ricci PC (2003) J Phys Chem B 107:13661. doi:10.1021/jp036691d

    Article  CAS  Google Scholar 

  12. Nishimura A, Sagawa N, Uchino T (2009) Phys Chem Lett 113:4260. doi:10.1021/jp900911v

    Article  CAS  Google Scholar 

  13. Nishimura A, Harada S, Uchino T (2010) J Phys Chem C 114:8568. doi:10.1021/jp1011268

    Article  CAS  Google Scholar 

  14. Sagawa N, Uchino T (2005) Appl Phys Lett 87:251923. doi:10.1063/1.2149290

    Article  Google Scholar 

  15. Uchino T, Kurumoto N, Sagawa N (2006) Phys Rev B 73:233203. doi:10.1103/PhysRevB.73.233203

    Article  Google Scholar 

  16. Banerjee S, Honkote S, Datta A (2011) J Phys Chem C 115:1576. doi:10.1021/jp1089273

    Article  CAS  Google Scholar 

  17. Anedda A, Carbonaro CM, Clemente F, Corpino R, Ricci PC (2005) Opt Mat 27:958. doi:10.1016/j.optmat.2004.08.043

    Article  CAS  Google Scholar 

  18. Anedda A, Carbonaro CM, Clemente F, Corpino R, Ricci PC (2005) Mater Sci Eng C 25:631. doi:10.1016/j.msec.2005.07.009

    Article  Google Scholar 

  19. Nakazaki Y, Fujita K, Tanaka K, Uchino T (2008) J Phys Chem C 112:10878. doi:10.1021/jp8025368

    Article  CAS  Google Scholar 

  20. Chang HJ, Chen YF, Lin HP, Mou CY (2001) Appl Phys Lett 78:3791. doi:10.1063/1.1370991

    Article  CAS  Google Scholar 

  21. Zhang M, Ciocan E, Bando Y, Wada K, Cheng LL, Pirouz P (2002) Appl Phys Lett 80:491. doi:10.1063/1.1434309

    Article  CAS  Google Scholar 

  22. Koyama H, Matsushita Y, Koshida N (1998) J Appl Phys 83:1776. doi:10.1063/1.366899

    Article  CAS  Google Scholar 

  23. Sagawa N, Uchino T (2008) J Phys Chem C 112:4581. doi:10.1021/jp076945l

    Article  CAS  Google Scholar 

  24. Anedda A, Carbonaro CM, Clemente F, Corpino R, Ricci PC (2005) J Phys Chem B 109:1239. doi:10.1021/jp0471397

    Article  CAS  Google Scholar 

  25. Carbonaro CM, Clemente F, Corpino R, Ricci PC, Anedda A (2005) J Phys Chem B 109:14441. doi:10.1021/jp0520648

    Article  CAS  Google Scholar 

  26. Carbonaro CM, Ricci PC, Anedda A (2007) Phys Rev B 76:125431. doi:10.1103/PhysRevB.76.125431

    Article  Google Scholar 

  27. Carbonaro CM, Chiriu D, Corpino R, Ricci PC, Anedda A (2007) J Non-Cryst Solids 353:550. doi:10.1016/j.jnoncrysol.2006.10.022

    Article  CAS  Google Scholar 

  28. Chiodini N, Meinardi F, Morazzoni F, Paleari A, Scotti R, Di Martino D (2000) Appl Phys Lett 76:3209. doi:10.1063/1.126631

    Article  CAS  Google Scholar 

  29. Yao B, Shi H, Zhang X, Zhang L (2001) Appl Phys Lett 78:174. doi:10.1063/1.1339844

    Article  CAS  Google Scholar 

  30. He H, Wang Y, Tang H (2002) J Phys: Condens Matter 14:11867

    Article  CAS  Google Scholar 

  31. Stapf S (2006) Nat Phys 2:731. doi:10.1038/nphys441

    Article  CAS  Google Scholar 

  32. Aboshi A, Kurumoto N, Yamada T, Uchino T (2007) J Phys Chem C 111:8483. doi:10.1021/jp0718505

    Article  CAS  Google Scholar 

  33. Glinka YD, Lin SH, Chen YT (2000) Phys Rev B 62:4733. doi:10.1103/PhysRevB.62.4733

    Article  CAS  Google Scholar 

  34. Glinka YD, Lin SH, Chen YT (1999) Appl Phys Lett 75:778. doi:10.1063/1.124510

    Article  CAS  Google Scholar 

  35. Carbonaro CM, Ricci PC, Corpino R, Marceddu M, Anedda A (2011) J Non-Cryst Solids 357:1904. doi:10.1016/j.jnoncrysol.2010.11.107

    Article  CAS  Google Scholar 

  36. Vaccaro L, Cannas M, Radzig V (2009) J Non-Cryst Solids 355:1020. doi:10.1016/j.jnoncrysol.2008.11.028

    Article  CAS  Google Scholar 

  37. Vaccaro L, Morana A, Radzig V, Cannas M (2011) J Phys Chem C 115:19476. doi:10.1021/jp204350u

    Article  CAS  Google Scholar 

  38. Vaccaro L, Cannas M (2010) J Phys: Condens matter 22:235801. doi:10.1088/0953-8984/22/23/235801

    Article  CAS  Google Scholar 

  39. Qin GG, Lin J, Duan JQ, Yao GQ (1996) Appl Phys Lett 69:1689. doi:10.1063/1.117029

    Article  CAS  Google Scholar 

  40. Glinka YD, Zyubin AS, Mebel AM, Lin SH, Hwang LP, Chen YT (2002) Chem Phys Lett 358:180. doi:10.1016/S0009-2614(02)00400-1

    Article  CAS  Google Scholar 

  41. Banerjee S, Datta A (2010) Langmuir 26:1172. doi:10.1021/la902265e-1176

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.M. Carbonaro and P.C. Ricci are grateful for the economic support from the RAS (Regione Autonoma della Sardegna) with a mobility and networking Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Carbonaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbonaro, C.M., Corpino, R., Ricci, P.C. et al. Changing the environment of mesoporous silica to investigate the origin of UV and visible photoluminescence of surface centers. J Mater Sci 48, 4452–4458 (2013). https://doi.org/10.1007/s10853-013-7264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7264-2

Keywords

Navigation