Skip to main content

Alkaline Silicate Solutions: An Overview of their Structure, Reactivity, and Applications

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Alkaline silicate solutions have many applications, including sand agglomeration and geopolymer production. To ensure the widespread use of these applications, it is necessary to identify the parameters controlling their reactivity and interactions with other materials, such as sand and metakaolin. It has been evidenced that the key parameters for solution reactivity are the Si/M molar ratio and the water contents. The most reactive alkaline solutions have alkali cation concentrations ranging from 4.5 to 9.5 mol/L. For the sand agglomeration application, it was shown that the used solutions are highly polymerized. In addition, the drying temperature and the method employed influence the silicate distribution in the final material. For geopolymer formation, it was evidenced that a highly reactive alkaline solution favors the formation of a geopolymer network by increasing the formation rate of Al(IV) up to 80 %, which improves the working properties of the final materials. Thus, knowledge of the key parameters controlling the alkaline silicate solution reactivity is important to determine the appropriate solution for a given application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguiar H, Serra J, González P, León B. Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. J Non-Cryst Solids. 2009;355:475–80.

    Article  Google Scholar 

  • Autef A. Formulation géopolymère: influence des rapports molaires Si/K et Si/Al sur les réactions de polycondensation au sein des gels aluminosilicatés. PhD thesis. University of Limoges; 2013.

    Google Scholar 

  • Autef A, Joussein E, Gasgnier G, Rossignol S. Role of the silica source on the geopolymerization rate. J Non-Cryst Solids. 2012;358:2886–93.

    Article  Google Scholar 

  • Bass JL, Turner GL, Morris MD. Vibrational and 29Si NMR spectroscopies of soluble silicate oligomers. Macromol Symp. 1999;140:263–70.

    Article  Google Scholar 

  • Belova EV, Kolyagin YA, Uspenskaya IA. Structure and glass transition temperature of sodium silicate glasses doped with iron. J Non-Cryst Solids. 2015;423–424:50–7.

    Article  Google Scholar 

  • Bourlon A. Physico-chimie et rhéologie des géopolymères frais pour la cimentation des puits pétroliers. PhD thesis. University of Pierre et Marie Curie; 2011.

    Google Scholar 

  • Brown IWM, Mackenzie KJD, Bowden ME, Meinhold RH. Outstanding problems in the kaolinite-mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: 11, high-temperature transformations of metakaolinite. J Am Ceram Soc. 1985;68:298–301.

    Article  Google Scholar 

  • Brykov AS, Danilov VV, Aleshunina EY. State of silicon in silicate and silica-containing solutions and their binding properties. Russ J Appl Chem. 2008;81:1717–21.

    Article  Google Scholar 

  • Chligui M. Etude des propriétés optiques et mécaniques des verres binaires silicatés d’alcalins lourds. PhD thesis. University of Orléans; 2010.

    Google Scholar 

  • Couty R, Fernandez L. Etude du passage de l’état colloïdal à l’état ionique de solutions de silicates sodiques par spectroscopie RMN 29Si et infrarouge. J Chim Phys Phys Chim Biol. 1998;95:384–7.

    Article  Google Scholar 

  • Cyr M, Trinh M, Husson B, Casaux-Ginestet G. Effect of cement type on metakaolin efficiency. Cem Concr Res. 2014;64:63–72.

    Article  Google Scholar 

  • Davidovits J. Geopolymer: chemistry and applications. 2nd ed. St-Quentin: Institut Géopolymère; 2008.

    Google Scholar 

  • Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf A. 2005a;269:47–58.

    Article  Google Scholar 

  • Duxson P, Lukey GC, Separovic F, van Deventer JSJ. Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res. 2005b;44:832–9.

    Article  Google Scholar 

  • Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ. Geopolymer technology: the current state of the art. J Mater Sci. 2007;42:2917–33.

    Article  Google Scholar 

  • Engelhardt G, Zeigan D, Jancke H, Hoebbel D, Weiker Z. High resolution 29Si NMR of silicates and zeolites. Z Anorg Allg Chem. 1975;418:17–28.

    Article  Google Scholar 

  • Favier A, Habert G, Roussel N, De Lacaillerie JB. A multinuclear static NMR study of geopolymerisation. Cem Concr Res. 2015;75:104–9.

    Article  Google Scholar 

  • Fletcher RA, MacKenzie KJD, Nicholson CL, Shimada S. The composition rage of aluminosilicate geopolymers. J Eur Ceram Soc. 2005;25:1471–7.

    Article  Google Scholar 

  • Geissberger AE, Galeener FL. Raman studies of vitreous SiO2 versus fictive temperature. Phys Rev B. 1983;28(6):3266–71.

    Article  Google Scholar 

  • Gharzouni A, Joussein E, Samet B, Baklouti S, Pronier S, Sobrados I, Sanz J, Rossignol S. The effect of an activation solution with siliceous species on the chemical reactivity and mechanical properties of geopolymers. J Sol-Gel Sci Technol. 2014;73:250–9.

    Article  Google Scholar 

  • Gharzouni A, Joussein E, Samet B, Baklouti S, Rossignol S. Effect of the reactivity of alkaline solution and metakaolin on geopolymer formation. J Non-Cryst Solids. 2015;410:127–34.

    Article  Google Scholar 

  • Gharzouni A, Joussein E, Samet B, Baklouti S, Rossignol S. Addition of low reactive clay into metakaolin-based geopolymer formulation: synthesis, existence domains and properties. Powder Technol. 2016;288:212–20.

    Article  Google Scholar 

  • Goudarzi N. Silicon-29 NMR spectroscopy study of the effect of tetraphenylammonium (TPA) as a template on distribution of silicate species on alkaline aqueous and alcoholic silicate solutions. Appl Magn Reson. 2013;44:469–78.

    Article  Google Scholar 

  • Gurevich L. Ceramic fuse wire coating. US patent 4,926,153. 1990.

    Google Scholar 

  • Guyot J. Mesure des surfaces spécifiques des argiles par adsorption Ann. Argon. 1969;20:33–359.

    Google Scholar 

  • Halasz I, Agarwal M, Li R, Miller N. Vibrational spectra of aqueous Na2SiO3 solutions. Catal Lett. 2007;117:34–42.

    Article  Google Scholar 

  • Halasz I, Agarwal M, Li R, Miller N. What can vibrational spectroscopy tell about the structure of dissolved sodium silicate. Microporous Mesoporous Mater. 2010;135:74–81.

    Article  Google Scholar 

  • Harris RK, Knight CTG. Silicon-29 nuclear magnetic resonance studies of aqueous silicate solutions. Part 5. First-order patterns in potassium silicate solutions enriched with silicon-29. J Chem Soc Faraday Trans 2. 1983a;79:1525–38.

    Google Scholar 

  • Harris RK, Knight CTG. Silicon-29 nuclear magnetic resonance studies of aqueous silicate solutions. Part 6. Second order patterns in potassium silicate solutions enriched with silicon-29. J Chem Soc Faraday Trans 2. 1983b;79:1539–61.

    Google Scholar 

  • Hehlen B, Neuville DR. Raman response of network modifier cations in alumino-silicate glasses. J Phys Chem B. 2015;119:4093–8.

    Article  Google Scholar 

  • Hunt JD, Kavner A, Schauble EA, Snyder D, Manning CE. Polymerization of aqueous silica in H2O-K2O solutions at 25–200 °C and 1 bar to 20 kbar. Chem Geol. 2011;283:161–70.

    Article  Google Scholar 

  • Iler RK. The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. New York: Wiley-Interscience; 1979.

    Google Scholar 

  • Iuga D, Morai C, Gan Z, Neuville DR, Cormier L, Massiot D. NMR heteronuclear correlation between quadrupolar nuclei in solids. J Am Chem Soc. 2005;127:11540–1.

    Article  Google Scholar 

  • Johnson ACJH, Greenwood P, Hagström M, Abbas Z, Wall S. Aggregation of nanosized colloidal silica in the presence of various alkali cations investigated by the electrospray technique. Langmuir. 2008;24:12798–806.

    Article  Google Scholar 

  • Keeley CT. Sodium silicate: the key ingredient in detergent agglomeration. J Am Oil Chem Soc. 1983;60:1370–2.

    Article  Google Scholar 

  • Konan KL, Soro J, Andji JYY, Oyetola S, Kra G. Etude comparative de la déshydroxylation/amorphisation dans deux kaolins de cristallinité différente. J Soc Ouest Afr Chim. 2010;30:29–39.

    Google Scholar 

  • Krivenko P. Alkaline cements: terminology, classification, aspects of durability. In: Proceedings of the 10th International Congress on the Chemistry of Cement, Gothenburg, Sweden; 1997. 4iv046, p. 6.

    Google Scholar 

  • Le Losq C, Neuville DR. Effect of the Na/K mixing on the structure and the rheology of tectosilicate silica-rich melts. Chem Geol. 2013;346:57–71.

    Article  Google Scholar 

  • Liew YM, Kamarudin H, Mustafa Al Bakri AM, Luqman M, Khairul Nizar I, Heah CY. Investigating the possibility of utilization of kaolin and the potential of metakaolin to produce green cement for construction purposes. Aust J Basic Appl Sci. 2011;5:441–9.

    Google Scholar 

  • Lucas S, Tognonvi MT, Gelet J-L, Soro J, Rossignol S. Interactions between silica sand and sodium silicate solution during consolidation process. J Non-Cryst Solids. 2011;357:1310–8.

    Article  Google Scholar 

  • Malfait WJ, Halter WE, Morizet Y, Meier BH, Verel R. Structural control on bulk melt properties: single and double quantum 29Si NMR spectroscopy on alkali-silicate glasses. Geochim Cosmochim Acta. 2007;71:6002–18.

    Article  Google Scholar 

  • Malfait WJ, Zakaznova-Herzog VP, Halter WE. Quantitative Raman spectroscopy: speciation of Na-silicate glasses and melts. Am Mineral. 2008;93:1505–18.

    Article  Google Scholar 

  • Man PP, Klinowski J. Quantitative determination of aluminium in zeolites by solid-state 27AI N.M.R. Spectroscopy. J Chem Soc Chem Comm. 1988;19:1291–4.

    Article  Google Scholar 

  • Muroya M. Correlation between the formation of silica skeleton and Fourier transform reflection infrared absorption spectroscopy spectra. Colloid Surf A. 1999;157:147–55.

    Article  Google Scholar 

  • Mysen BO, Finger LW, Virgo D, Seifert FA. Curve-fitting of Raman spectra of silicate glasses. Am Mineral. 1982;67:686–95.

    Google Scholar 

  • Nordström J, Nilsson E, Jarvol P, Nayeri M, Palmqvist A, Bergenholtz J, Matic A. Concentration- and pH-dependence of highly alkaline sodium silicate solutions. J Colloid Interface Sci. 2011;356:37–45.

    Article  Google Scholar 

  • Rees CA, Provis JL, Lukey GC, van Deventer JSJ. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir. 2007;23(17):9076–82.

    Article  Google Scholar 

  • Rees CA, Provis JL, Lukey GC, van Deventer JSJ. The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloid Surf A. 2008;318:97–105.

    Article  Google Scholar 

  • Rowels MR, Hanna JV, Pike KJ, Smith ME, Connor BHO. 29Si, 27Al, 1H and 23Na MAS NMR study of the bonding character in aluminosilicate inorganic polymers. Appl Magn Reson. 2007;32:663–89.

    Article  Google Scholar 

  • San Nicolas R, Cyr M, Escadeillas G. Characteristics and applications of flash metakaolins. Appl Clay Sci. 2013;83–84:253–62.

    Article  Google Scholar 

  • Schmidt BC, Riemer T, Kohn SC, Holtz F. Structural implications of water dissolution in haplogranitic glasses from NMR spectroscopy: influence of total water content and mixed alkali effect. Geochim Cosmochim Acta. 2001;65:2949–64.

    Article  Google Scholar 

  • Steins P. Influence des paramètres de formulation sur la texturation et la structuration des géopolymères. PhD thesis. University of Limoges; 2014.

    Google Scholar 

  • Svensson IL, Sjöberg S, Öhman L-O. Polysilicate equilibria in concentrated sodium silicate solutions. J Chem Soc Faraday Trans. 1986;82:3635–46.

    Article  Google Scholar 

  • Talaghat MR, Esmaeilzadeh F, Mowla D. Sand production control by chemical consolidation. J Pet Sci Eng. 2009;67:34–40.

    Article  Google Scholar 

  • Tan J, Zhao S, Wang W, Davies G, Mo X. The effect of cooling rate on the structure of sodium silicate glass. Mater Sci Eng B. 2004;106:295–9.

    Article  Google Scholar 

  • Tognonvi MT, Massiot D, Lecomte A, Rossignol S, Bonnet J-P. Identification of solvated species present in concentrated and dilute sodium silicate solutions by combined 29Si NMR and SAXS studies. J Colloid Interface Sci. 2010;352:309–15.

    Article  Google Scholar 

  • Tognonvi MT, Soro J, Rossignol S. Physical-chemistry of silica/alkaline silicate interactions during consolidation. Part 1: effect of cation size. J Non-Cryst Solids. 2012;358:81–7.

    Article  Google Scholar 

  • Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L. The potential use of geopolymeric materials to immobilize toxic metals: part 1 theory and applications. Miner Eng. 1999;10:659–69.

    Article  Google Scholar 

  • Vivier G. Relations entre la microstructure des blocs agglomérés et les propriétés électriques des fusibles. PhD thesis. Institut National des Sciences Appliquées de Lyon; 2010.

    Google Scholar 

  • Walther JV. Relation between rates of aluminosilicate mineral dissolution, pH, temperature and surface charge. Am J Sci. 1996;7:296–693.

    Google Scholar 

  • Weng L, Sagoe-Crentsil K, Brown T, Song S. Effects of aluminates on the formation of geopolymers. Mater Sci Eng B. 2005;117:163–8.

    Article  Google Scholar 

  • Zotov N, Ebbsjö I, Timpel D, Keppler H. Calculation of Raman spectra and vibrational properties of silicate glasses: comparison between Na2Si4O4 and SiO2 glasses. Phys Rev B. 1999;60(9):6383–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Vidal, L., Gharzouni, A., Rossignol, S. (2016). Alkaline Silicate Solutions: An Overview of their Structure, Reactivity, and Applications. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_88-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_88-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics