Skip to main content
Log in

Effects of ball milling on structural changes and hydrolysis of lignocellulosic biomass in liquid hot-water compressed carbon dioxide

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Mechanical activation is an effective method for destroying the crystalline structure. Biomass, especially its hemicellulose, can be degraded in the green solvent of liquid hot-water compressed carbon dioxide. To improve the degradation of crystalline cellulose in liquid hot-water compressed carbon dioxide, pretreatment of camphorwood sawdust by mechanical activation with a stirring ball mill was studied. Ball milling parameters and their effects on structure were determined by SEM, XRD and FT-IR. The influence of milling parameters on cellulose conversion can be ranked as follows: ball milling speed>activation time>the mass ratio of ball to biomass. The optimum milling condition was obtained at ball milling speed of 450 rpm and mass ratio of 30: 1 of ball to biomass for 2 h. In this condition, cellulose crystallinity of sawdust decreased from 60.93% to 21.40%. The cellulose conversion was 37.8%, which was nearly four times of raw material (10.2%). The glucose yield in the hydrolysate was 1.49 g·L−1, which was nearly three times of that of raw material. It showed mechanical activation can destroy the crystalline structure of cellulose to promote degradation and the damage of lignocellulosic internal structure caused by ball milling is irreversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Yue, F. You and S.W. Snyder, Comput. Chem. Eng., 66, 36 (2014).

    Article  CAS  Google Scholar 

  2. C. Weber, A. Farwick and F. Benisch, Appl. Microbiol. Biotechnol., 87, 1303 (2010).

    Article  CAS  Google Scholar 

  3. P. Phitsuwan, K. Sakka and K. Ratanakhanokchai, Biomass Bioenergy, 58, 390 (2013).

    Article  CAS  Google Scholar 

  4. T. Vancov and S. McIntosh, J. Chem. Technol. Biotechnol., 86, 818 (2011).

    Article  CAS  Google Scholar 

  5. L. Canilha, V.T.O. Santos and G. S. M. Rocha, J. Ind. Microbiol. Biotechnol., 38, 1467 (2011).

    Article  CAS  Google Scholar 

  6. K. Masahiro, I. Nozomi and K. Toshiaki, Curr. Microbiol., 54, 424 (2007).

    Article  Google Scholar 

  7. I.A. Ares-Peón, C. Vila, G. Garrote and J.C. Parajó, J. Chem. Technol. Biotechnol., 86, 251 (2011).

    Article  Google Scholar 

  8. P. Zhao, H. F. Lu and B. Liang, J. Biobased Mater. Bioenergy, 9, 334 (2015).

    Article  CAS  Google Scholar 

  9. P. Alvira, E. Tomás-Pejó and M. Ballesteros, Bioresour. Technol., 101, 4851 (2010).

    Article  CAS  Google Scholar 

  10. J. Zhu, P. Xu and R. Zalesny, Appl. Microbiol. Biotechnol., 87, 847 (2010).

    Article  CAS  Google Scholar 

  11. M. Linde and E. L. Jakobsson, Biomass Bioenergy, 32, 326 (2008).

    Article  CAS  Google Scholar 

  12. M. Galbe and G. Zacchi, Adv. Biochem. Eng., 108, 41 (2007).

    CAS  Google Scholar 

  13. P. Kumar, D. M. Barrett and M. J. Delwiche, Ind. Eng. Chem. Res., 48, 3713 (2009).

    Article  CAS  Google Scholar 

  14. V. Chang and M. Nagwani, Appl. Biochem. Biotechnol., 94, 1 (2001).

    Article  CAS  Google Scholar 

  15. K. Karimi, S. Kheradmandinia and M. J. Taherzadeh, Biomass Bioenergy, 30, 247 (2006).

    Article  CAS  Google Scholar 

  16. R.C.N.R. Corrales, F.M.T. Mendes and C.C. Perrone, Biotechnol. Biofuels, 5, 36 (2012).

    Article  CAS  Google Scholar 

  17. D. Tromans and J.A. Meech, Miner. Eng., 14, 1359 (2001).

    Article  CAS  Google Scholar 

  18. A.T.W.M. Hendriks and G. Zeeman, Bioresour. Technol., 10, 10 (2009).

    Article  Google Scholar 

  19. D. S. Ayla Sant’Ana, I. Hiroyuki and E. Takashi, Bioresour. Technol., 101, 7402 (2010).

    Article  Google Scholar 

  20. M. Ago, T. Endo and T. Hirotsu, Cellulose, 11, 163 (2004).

    Article  CAS  Google Scholar 

  21. Z.D. Liao, Z.Q. Huang and H.Y. Hu, Bioresour. Technol., 102, 7953 (2011).

    Article  CAS  Google Scholar 

  22. H.Y. Hu and Y. Zhang, Polym. Bull., 71, 453 (2014).

    Article  CAS  Google Scholar 

  23. M. Dawy, A. A. Shabaka and A. M.A. Nada, Polym. Degrad. Stab., 62, 455 (1998).

    Article  CAS  Google Scholar 

  24. J.K. de Andrade, E. Komatsu, H. Perreault, Y.R. Torres, M.R. da Rosa and M. L. Felsner, Food Chemistry, 190, 481 (2016).

    Article  Google Scholar 

  25. I. P. Wood, A. Elliston and P. Ryden, Biomass Bioenergy, 44, 117 (2012).

    Article  CAS  Google Scholar 

  26. S. Kim and M.T. Holtzapple, Bioresour. Technol., 97, 583 (2006).

    Article  CAS  Google Scholar 

  27. H.G. Lu, Introduction to Power Technology, TongJi University Press, Shang Hai (1998).

    Google Scholar 

  28. R. Yang, X. Chen and J. Yu, Chem. Ind. Forest Prod., 1, 83 (2015).

    Google Scholar 

  29. Z.Q. Huang, X. Liang and H.Y. Hu, Polym. Degrad. Stab., 94, 1737 (2009).

    Article  CAS  Google Scholar 

  30. J. Yang and T. Zhang, Acta. Metall. Sin., 33, 381 (1997).

    CAS  Google Scholar 

  31. X. Colom, F. Carrillo and F. Nogués, Polym. Degrad. Stab., 80, 543 (2003).

    Article  CAS  Google Scholar 

  32. M. Schwanninger, J.C. Rodrigues and H. Pereira, Vib. Spectrosc., 36, 23 (2004).

    Article  CAS  Google Scholar 

  33. W. Zhang, M. Liang and C. Lu, Cellulose, 14, 447 (2007).

    Article  CAS  Google Scholar 

  34. J. Chen, Chemical of papermaking and plant resources, Science Press, Bei Jing (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houfang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Liu, S., Feng, G. et al. Effects of ball milling on structural changes and hydrolysis of lignocellulosic biomass in liquid hot-water compressed carbon dioxide. Korean J. Chem. Eng. 33, 2134–2141 (2016). https://doi.org/10.1007/s11814-016-0044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0044-3

Keywords

Navigation