Skip to main content

Advertisement

Log in

Design and optimization of heat integrated dividing wall columns for improved debutanizing and deisobutanizing fractionation of NGL

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Dividing wall columns, capable of reducing the energy required for the separation of ternary mixtures, were explored for the energy-efficient integration of debutanization and deisobutanization. A new practical approach to the design and optimization of dividing wall columns was used to optimize dividing wall columns. A conventional dividing wall column and a multi-effect prefractionator arrangement were shown to reduce total annual cost considerably compared with conventional distillation sequence. Various configurations incorporating a heat pump in a bottom diving wall columns were also proposed to enhance energy efficiency further. The result showed that operating cost could be reduced most significantly through novel combinations of internal and external heat integration: bottom dividing wall columns employing either a top vapor recompression heat pump or a partial bottom flashing heat pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Dejanović, Lj. Matijašević and Ž. Olujić, Chem. Eng. Process., 49, 559 (2010).

    Article  Google Scholar 

  2. J. L. Humphrey and G. E. Keller II, Separation Process Technology, McGraw-Hill, New York (1997).

    Google Scholar 

  3. Ž. Olujić, M. Jödecke, A. Shilkin, G. Schuch and B. Kaibel, Chem. Eng. Process., 48, 1089 (2009).

    Article  Google Scholar 

  4. N. Asprion and G. Kaibel, Chem. Eng. Process., 49, 139 (2010).

    Article  CAS  Google Scholar 

  5. N.V. D. Long, S. H. Lee and M.Y. Lee, Chem. Eng. Process., 49, 825 (2010).

    Article  Google Scholar 

  6. N.V. D. Long and M.Y. Lee, Korean J. Chem. Eng., 29, 567 (2012).

    Article  Google Scholar 

  7. N.V. D. Long and M.Y. Lee, J. Chem. Eng. Japan, 45, 285 (2012).

    Article  Google Scholar 

  8. L. Q. Minh, N.V. D. Long and M.Y. Lee, Korean J. Chem. Eng., 29(11), 1500 (2012).

    Article  CAS  Google Scholar 

  9. S.G. Lee, N.V. D. Long and M.Y. Lee, Ind. Eng. Chem. Res., 51, 10021 (2012).

    Article  CAS  Google Scholar 

  10. N. V. D. Long and M. Y. Lee, Asia-Pac. J. Chem. Eng., 7, S71 (2012).

    Article  Google Scholar 

  11. Y.H. Kim, M. Nakaiwa and K. S. Hwang, Korean J. Chem. Eng., 19, 383 (2002).

    Article  CAS  Google Scholar 

  12. Y. H. Kim, K. S. Hwang and M. Nakaiwa, Korean J. Chem. Eng., 21, 1098 (2004).

    Article  CAS  Google Scholar 

  13. N. Poth, D. Brusis and J. Stichlmair, Chem. Ing. Technol., 76, 1811 (2004).

    Article  CAS  Google Scholar 

  14. K.A. Amminudin, R. Smith, D.Y. C. Thong and G. P. Towler, Trans. IChemE., 79(Part A), 701 (2001).

    Article  CAS  Google Scholar 

  15. D. Bruisma and S. Spoelstra, Heat Pumps in Distillation, Distillation Absorption (2010).

  16. N. Asprion, B. Rumpf and A. Gritsch, Appl. Thermal Eng., 31, 2067 (2011).

    Article  Google Scholar 

  17. O. Annakou and P. Mizsey, Heat Recovery Systems and CHP, 15, 241 (1995).

    Article  CAS  Google Scholar 

  18. F. Moser and H. Schnitzer, Heat Pumps in Industry, Elsevier, Amsterdam (1985).

    Google Scholar 

  19. S. Ranade and Y. Chao, Industrial heat pumps: where and when? Hydrocarbon Processing, 71 (1990).

  20. P. Mizsey and Z. Fonyo, Energy integrated distillation system design enhanced by heat pumping, Distillation and Absorption (1992).

  21. J. Stichlmair, Distillation and Rectification, in Ullmann’s Encyclopedia of Industrial Chemistry — Fifth Ed., B3, 4.1 (1988).

    Google Scholar 

  22. J.G. Stichlmair and J. R. Fair, Distillation-Principles and Practices, Wiley-VCH, New York (1998).

    Google Scholar 

  23. D. B. Manley, Multiple Effect and Distributive Separation of Isobutane and Normal Butane, US Patent, 8,806,339 (1998).

  24. E. Díez, P. Langston, G. Ovejero and M. Romero, Applied Thermal, 29, 1216 (2009).

    Article  Google Scholar 

  25. K. A. Amminudin and R. Smith, Trans. IChemE, 79, 716 (2001).

    Article  CAS  Google Scholar 

  26. N.V.D. Long and M.Y. Lee, Com. Chem. Eng., 37, 119 (2012).

    Article  Google Scholar 

  27. G. E. P. Box and D.W. Behnken, J. Technometrics, 2, 455 (1960).

    Article  Google Scholar 

  28. N.V. D. Long and M.Y. Lee, Asia Pac. J. Chem. Eng., 6, 338 (2011).

    Article  Google Scholar 

  29. S. H. Lee, M. Shamsuzzoha, M. Han, Y. H. Kim and M. Y. Lee, Korean J. Chem. Eng., 28, 48 (2011).

    Google Scholar 

  30. R. Premkumar and G. P. Rangaiah, Chem. Eng. Res. Des., 87, 47 (2009).

    Article  CAS  Google Scholar 

  31. Aspen Technology, Aspen HYSYS Thermodynamics COM Interface, Version Number V7.1 (2009).

  32. R. Turton, R. C. Bailie, W. B. Whiting and J.A. Shaeiwitz, Analysis, synthesis and design of chemical processes, Prentice Hall, Upper Saddle River, NJ, 187 (2003).

    Google Scholar 

  33. G. Kaibel, Chem. Eng. Technol., 10, 92 (1987).

    Article  Google Scholar 

  34. Z. Fidkowski and L. Krolikowski, AIChE J., 33, 643 (1987).

    Article  CAS  Google Scholar 

  35. M. A. Gadalla, Chem. Eng. Res. Des., 87, 1658 (2009).

    Article  CAS  Google Scholar 

  36. H. K. Engelien and S. Skogestad, Chem. Eng. Process., 44, 819 (2005).

    Article  CAS  Google Scholar 

  37. H. C. Cheng and W. Luyben, Ind. Eng. Chem. Process Des. Dev., 24, 707 (1985).

    Article  CAS  Google Scholar 

  38. M. Emtir, E. Rev and Z. Fonyo, Appl. Therm. Eng., 21, 1299 (2001).

    Article  CAS  Google Scholar 

  39. R. Smith, Chemical Process Design, McGraw Hill, New York, 346 (1995).

    Google Scholar 

  40. S. K. Sinnott, Chemical Engineering Design (4th Ed.), Coulson & Richardson’s Chemical Engineering Series vol. 6, Elsevier Butterworth Heinemann, Oxford (2005).

    Google Scholar 

  41. L. T. Biegler, I. E. Grossmann and A.W. Westerberg, Systematic Methods of Chemical Process Design, Prentice Hall Inc., New Jersey, 110 (1997).

    Google Scholar 

  42. M. S. Peters and K. D. Timmerhaus, Plant Design and Economics for Chemical Engineers, McGraw-Hill, 4th Ed., 523 (1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Yong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, N.V.D., Lee, M.Y. Design and optimization of heat integrated dividing wall columns for improved debutanizing and deisobutanizing fractionation of NGL. Korean J. Chem. Eng. 30, 286–294 (2013). https://doi.org/10.1007/s11814-012-0149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0149-2

Key words

Navigation