Skip to main content
Log in

Genotype and Phylogenetic Diversity of Symbiodinium ITS2 Sequences Within Clade C in Three Typical Coral Species from Luhuitou Fringing Reef of the South China Sea

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Dinoflagellates in the genus Symbiodinium, including nine clades (A–I), mainly form mutualistic symbioses with corals. More than 100 Symbiodinium molecular types have been identified by the ITS2-based genotype method within any given clade, and specifically within Symbiodinium clade C. However, the genotype identification method using the ITS2 sequence is likely to lead to high diversity estimates due to the intra-genomic variations in the ITS2 space; thus, further validation is essential for a correct identification. In this study, the molecular diversity of Symbiodinium ITS2 sequences cloned from two stone corals, Acropora sp. SY-01 and Pocillopora sp. SY-05, and one soft coral, Sarcophyton sp. SY-07, living in the northern part of South China Sea (SCS), were analyzed and compared using the ITS2-based genotype identification method, coupled with ITS2-based secondary structural and phylogenetic analyses. As the result, 12 Symbiodinium ITS2 genotypes were identified, while only six and three Symbiodinium ITS2 genotypes were supported by ITS2-based secondary structural and phylogenetic analyses, respectively. In addition, no shared Symbiodinium ITS2 genotypes were observed among the three coral species, suggesting coral species-dependent Symbiodinium genotypes were within clade C. In summary, the present study provides a theoretical basis for validating the molecular diversity of Symbiodinium ITS2 genotypes in corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arif, C., Daniels, C., Bayer, T., Banguera-Hinestroza, E., Barbrook, A., and Howe, C. J., 2014. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Molecular Ecology, 23: 4418–4433.

    Article  Google Scholar 

  • Brown, B. E., 1997. Coral bleaching: Causes and consequences. Coral Reefs, 16: 129–138.

    Article  Google Scholar 

  • Baker, A. C., Starger, C. J., McClanahan, T. R., and Glynn, P. W., 2004. Coral reefs: Corals’ adaptive response to climate change. Nature, 430: 741.

    Article  Google Scholar 

  • Baker, A. C., 2003. Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology Evolution and Systematics, 34: 661–689.

    Article  Google Scholar 

  • Barott, K. L., Venn, A. A., Perez, S. O., Tambutté, S., and Tresguerres, M., 2015. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proceedings of the National Academy of Sciences, 112: 607–612.

    Article  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7: 335–336.

    Article  Google Scholar 

  • Dong, Z. J., Huang, H., Huang, L. M., and Li, Y. C., 2009. Diversity of symbiotic algae of the genus Symbiodinium in scleractinian corals of the Xisha Islands in the South China Sea. Journal of Systematics and Evolution, 47: 321–326.

    Article  Google Scholar 

  • Eldredge, N., and Cracraft, J., 1980. Phylogenetic Patterns and the Evolutionary Process: Method and Theory in Comparative Biology. Columbia University Press, New York, 349pp.

    Google Scholar 

  • Falkowski, P. G., Dubinsky, Z., Muscatine, L., and Porter, J. W., 1984. Light and the bioenergetics of a symbiotic coral. Bio-Science, 34: 705–709.

    Google Scholar 

  • Hunter, C. L., Morden, C. W., and Smith, C. M., 1997. The utility of ITS sequences in assessing relationships among zooxanthellae and corals. Proceedings of the Eight International Coral Reef Symposium, 2: 1599–1602.

    Google Scholar 

  • Koetschan, C., Forster, F., Keller, A., Schleicher, T., Ruderisch, B., Schwarz, R., Muller, T., Wolf, M., and Schultz, J., 2010. The ITS2 Database III–Sequences and structures for phylogeny. Nucleic Acids Research, 38: 275–279.

    Article  Google Scholar 

  • LaJeunesse, T. C., 2001. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: In search of a ‘species’ level marker. Journal of Phycology, 37: 866–880.

    Article  Google Scholar 

  • LaJeunesse, T. C., Bhagooli, R., Hidaka, M., Done, T., de Vantier, L., Schmidt, G. W., Fitt, W. K., and Hoegh-Guldberg, O., 2004a. Closely related Symbiodinium spp. differ in relative dominance within coral reef host communities across environmental, latitudinal, and biogeographic gradients. Marine Ecology Progress Series, 284: 147–161.

    Article  Google Scholar 

  • LaJeunesse, T. C., Thornhill, D. J., Cox, E. F., Stanton, F. G., Fitt, W. K., and Schmidt, G. W., 2004b. High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs, 23: 596–603.

    Google Scholar 

  • LaJeunesse, T. C., Bonilla, H. R., Warner, M. E., Wills, M., Schmidt, G. W., and Fitt, W. K., 2008. Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnology and Oceanography, 53: 719.

    Article  Google Scholar 

  • LaJeunesse, T. C., Smith, R., Walther, M., Pinzon, J., Pettay, D. T., McGinley, M., Aschaffenburg, M., Medina-Rosas, P., Cupul-Magana, A. L., Perez, A. L., Reyes-Bonilla, H., and Warner, M. E., 2010. Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proceedings of the Royal Society B: Biological Sciences, 277: 2925–2934.

    Article  Google Scholar 

  • LaJeunesse, T. C., and Thornhill, D. J., 2011. Improved resolution of reef-coral endosymbiont Symbiodinium species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One, 6: e29013.

    Article  Google Scholar 

  • Lien, Y. T., Fukami, H., and Yamashita, Y., 2013. Genetic variations within Symbiodiniumclade C among zooxanthellate corals (Scleractinia) in the temperate zone of Japan. Fisheries Science, 79: 579–591.

    Article  Google Scholar 

  • Muscatine, L., 1990. The role of symbiotic algae in carbon and energy flux in reef corals. Ecosystems of the World, 25: 75–87.

    Google Scholar 

  • Oliver, T. A., and Palumbi, S. R., 2011. Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs, 30: 241–250.

    Article  Google Scholar 

  • Pawlowski, J., Holzmann, M., Fahrni, J., Pochon, X., and Lee, J. J., 2001. Molecular identification of algal endosymbionts in large miliolid foraminifera: 2. Dinoflagellates. Journal of Eukaryotic Microbiology, 48: 368–373.

    Article  Google Scholar 

  • Pochon, X., and Gates, R. D., 2010. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawaii. Molecular Phylogenetics and Evolution, 56: 492–497.

    Article  Google Scholar 

  • Pochon, X., Putnam, H. M., Burki, F., and Gates, R. D., 2012. Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS One, 7: e29816.

    Article  Google Scholar 

  • Pochon, X., Putnam, H. M., and Gates, R. D., 2014. Multi-gene analysis of Symbiodinium dinoflagellates: A perspective on rarity, symbiosis, and evolution. Peer J, 2: e394.

    Article  Google Scholar 

  • Putnam, H. M., Stat, M., Pochon, X., and Gates, R. D., 2012. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proceedings of the Royal Society B: Biological Sciences, 279: 4352–4361.

    Article  Google Scholar 

  • Rowan, R., and Powers, D. A., 1992. Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proceedings of the National Academy of Sciences, 89: 3639–3643.

    Article  Google Scholar 

  • Sampayo, E. M., Dove, S., and Lajeunesse, T. C., 2009. Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Molecular Ecology, 18 (3): 500.

    Article  Google Scholar 

  • Santos, S. R., and Coffroth, M. A., 2003. Molecular genetic evidence that dinoflagellates belonging to the genus Symbiodinium Freudenthal are haploid. The Biological Bulletin, 241: 10–20.

    Article  Google Scholar 

  • Santos, S. R., Gutierrez, R. C., and Coffroth, M. A., 2003. Phylogenetic identification of symbiotic dinoflagellates via length heteroplasmy in domain V of chloroplast largesubunit (cp23S)-ribosomal DNA sequences. Marine Biotechnology, 5: 130–140.

    Google Scholar 

  • Santos, S. R., Taylor, D. J., Kinzie, R. A., Hidaka, M., Sakai, K., and Coffroth, M. A., 2002. Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit 23S-rDNA sequences. Molecular Phylogenetics and Evolution, 23: 97–111.

    Article  Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F., 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75: 7537–7541.

    Article  Google Scholar 

  • Silverstein, R. N., Correa, A. M. S., LaJeunesse, T. C., and Baker, A. C., 2011. Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia. Marine Ecology Progress Series, 422: 63–75.

    Article  Google Scholar 

  • Thomas, L., Kendrick, G. A., Kennington, W. J., Richards, Z. T, and Stat, M., 2014. Exploring Symbiodinium diversity and host specificity in Acropora corals from geographical extremes of Western Australia with 454 amplicon pyrosequencing. Molecular Ecology, 23: 3113–3126.

    Article  Google Scholar 

  • Takishita, K., Ishikura, M., Koike, K., and Maruyama, T., 2003. Comparison of phylogenies based on nuclear-encoded SSU rDNA and plastid-encoded psbA in the symbiotic dinoflagellate genus Symbiodinium. Phycologia, 42: 469–481.

    Article  Google Scholar 

  • Takabayashi, M., Santos, S. R., and Cook, C. B., 2004. Mitochondrial DNA phylogeny of the symbiotic dinoflagellates (Symbiodinium, Dinophyta). Journal of Phycology, 40: 160–164.

    Article  Google Scholar 

  • Thornhill, D. J., LaJeunesse, T. C., and Santos, S. R., 2007. Measuring rDNA diversity in eukaryotic microbial systems: How intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Molecular Ecology, 16: 5326–5340.

    Article  Google Scholar 

  • Thornhill, D. J., Xiang, Y., Fitt, W. K., and Santos, S. R., 2009. Reef Endemism, Host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS One, 4: e6262.

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., 2013. MEGA6: Molecular evolutionary genetics analysis Version 6.0. Molecular Biology and Evolution, 30: 2725–2729.

    Article  Google Scholar 

  • Tonk, L., Sampayo, E. M., Weeks, S., Magno-Canto, M., and Guldberg-Hoegh, O., 2013. Host-specific interactions with environmental factors shape the distribution of Symbiodinium across the Great Barrier Reef. PLoS One, 8: e68533.

    Article  Google Scholar 

  • van Oppen, M. J. H., Mieog, J. C., Sánchez, C. A., and Fabricius, K. E., 2005. Diversity of algal endosymbionts (zooxanthellae) in octocorals: The roles of geography and host relationships. Molecular Ecology, 14: 2403–2417.

    Article  Google Scholar 

  • Wicks, L. C., Sampayo, E., Gardner, J. P. A., and Davy, S. K., 2010. Local endemicity and high diversity characterise highlatitude coral–Symbiodinium partnerships. Coral Reefs, 29: 989–1003.

    Article  Google Scholar 

  • Zhang, H., Bhattacharya, D., and Lin, S., 2005. Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. Journal of Phycology, 41: 411–420.

    Article  Google Scholar 

  • Zhou, G., Huang, H., Zhang, C., and Li, X., 2012. Habitat correlation of Symbiodinium diversity in two reef-building coral species in an upwelling region, eastern Hainan Island, China. Journal of the Marine Biological Association of the United Kingdom, 92: 1309–1316.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Major National Scientific Research Project, China (No. 2013CB956103) and the Minhang Leading Talent Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, S., Zhang, F. & Li, Z. Genotype and Phylogenetic Diversity of Symbiodinium ITS2 Sequences Within Clade C in Three Typical Coral Species from Luhuitou Fringing Reef of the South China Sea. J. Ocean Univ. China 17, 1411–1417 (2018). https://doi.org/10.1007/s11802-018-3628-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-018-3628-1

Key words

Navigation