Skip to main content

Advertisement

Log in

Many corals host thermally resistant symbionts in high-temperature habitat

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Physiologically distinct lines of dinoflagellate symbionts, Symbiodinium spp., may confer distinct thermal tolerance thresholds on their host corals. Therefore, if a coral can alternately host distinct symbionts, changes in their Symbiodinium communities might allow corals to better tolerate increasing environmental temperatures. However, researchers are currently debating how commonly coral species can host different symbiont types. We sequenced chloroplast 23 s rDNA from the Symbiodinium communities of nine reef-building coral species across two thermally distinct lagoon pools separated by ~500 m. The hotter of these pools reaches 35°C in the summer months, while the other pool’s maximum temperature is 1.5°C cooler. Across 217 samples from nine species, we found a single haplotype in both Symbiodinium clades A and D, but four haplotypes in Symbiodinium clade C. Eight of nine species hosted a putatively thermally resistant member of clade D Symbiodinium at least once, one of which hosted this clade D symbiont exclusively. Of the remaining seven that hosted multiple Symbiodinium types, six species showed higher proportions of the clade D symbiont in the hotter pool. Average percentage rise in the frequency of the clade D symbiont from the hotter to cooler pool was 52% across these six species. Even though corals hosted members of both the genetically divergent clades D and C Symbiodinium, some showed patterns of host–symbiont specificity within clade C. Both Acropora species that hosted clade C exclusively hosted a member of sub-clade C2, while all three Pocillopora species hosted a member of sub-clade C1 (sensu van Oppen et al. 2001). Our results suggest that coral–algal symbioses often conform to particular temperature environments through changes in the identity of the algal symbiont.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abrego D, Ulstrup K, Willis B, van Oppen M (2008) Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc, B 275:2273–2282

    Article  CAS  Google Scholar 

  • Apprill AM, Gates RD (2007) Recognizing diversity in coral symbiotic dinoflagellate communities. Mol Ecol 16:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Baird AH, Cumbo VR, Leggat W, Rodriguez-Lanetty M (2007) Fidelity and flexibility in coral symbioses. Mar Ecol Prog Ser 347:307–309

    Article  Google Scholar 

  • Baker A (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics 34:661–689

    Article  Google Scholar 

  • Baker AC, Romanski AM (2007) Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: Comment on Goulet (2006). Mar Ecol Prog Ser 335:237–242

    Article  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741

    Article  CAS  PubMed  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Biol Sci Ser B 273:2305–2312

    Article  Google Scholar 

  • Chen CA, Lam KK, Nakano Y, Tsai WS (2003) A stable association of the stress-tolerant zooxanthellae, Symbiodinium clade D, with the low-temperature-tolerant coral, Oulastrea crispata (Scleractinia: Faviidae) in subtropical non-reefal coral communities. Zool Stud 42:540–550

    Google Scholar 

  • Chen CA, Wang AT, Fang LS, Yang YW (2005) Fluctuating algal symbiont communities in Acropora palifera (Scleractinia : Acroporidae) from Taiwan. Mar Ecol Prog Ser 295:113–121

    Article  Google Scholar 

  • Craig P, Birkeland C, Belliveau S (2001) High temperatures tolerated by a diverse assemblage of shallow-water corals in American Samoa. Coral Reefs 20:185–189

    Article  Google Scholar 

  • Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458

    Article  CAS  PubMed  Google Scholar 

  • Fitt W, Gates R, Hoegh-Guldberg O, Bythell J, Jatkar A, Grottoli A, Gomez M, Fisher P, Lajuenesse T, Pantos O (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110

    Article  Google Scholar 

  • Garren M, Walsh SM, Caccone A, Knowlton N (2006) Patterns of association between Symbiodinium and members of the Montastraea annularis species complex on spatial scales ranging from within colonies to between geographic regions. Coral Reefs 25:503–512

    Article  Google Scholar 

  • Gates RD, Edmunds PJ (1999) The physiological mechanisms of acclimatization in tropical reef corals. Am Zool 39:30–43

    Google Scholar 

  • Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7

    Article  Google Scholar 

  • Goulet TL (2007) Most scleractinian corals and octocorals host a single symbiotic zooxanthella clade. Mar Ecol Prog Ser 335:243–248

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc Biol Sci Ser B 275:1359–1365

    Article  CAS  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol (Berl) 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, deVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Article  Google Scholar 

  • LaJeunesse TC, Loh W, Trench RK (2009) Do introduced endosymbiotic dinoflagellates ‘take’ to new hosts? Biol Invasions 11:995–1003

    Article  Google Scholar 

  • LaJeunesse TC, Pettay T, Sampayo EM, Phongsuwan N, Brown B, Obura D, Hoegh-Guldberg O, Fitt WK (2010a) Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800

    Article  Google Scholar 

  • LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, Pérez AL, Reyes-Bonilla H, Warner ME (2010b) Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance. Proc R Soc Biol Sci Ser B 277:2925–2934

    Article  Google Scholar 

  • Lien YT, Nakano Y, Plathong S, Fukami H, Wang JT, Chen CA (2007) Occurrence of the putatively heat-tolerant Symbiodinium phylotype D in high-latitudinal outlying coral communities. Coral Reefs 26:35–44

    Article  Google Scholar 

  • Oliver T, Palumbi S (2009) Distributions of stress-resistant coral symbionts match environmental patterns at local but not regional scales. Mar Ecol Prog Ser 378:93–103

    Article  CAS  Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30

    Article  CAS  PubMed  Google Scholar 

  • Rowan R (2004) Coral bleaching—Thermal adaptation in reef coral symbionts. Nature 430:742

    Article  CAS  PubMed  Google Scholar 

  • Sampayo EM, Dove S, LaJeunesse TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519

    Article  CAS  PubMed  Google Scholar 

  • Smith L, Birkeland C (2007) Effects of intermittent flow and irradiance level on back reef Porites corals at elevated seawater temperatures. J Exp Mar Biol Ecol 341:282–294

    Article  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    Article  CAS  PubMed  Google Scholar 

  • Thornhill D, LaJeunesse T, Santos S (2007) Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol Ecol 16:5326–5340

    Article  CAS  PubMed  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: Patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull (Woods Hole) 201:348–359

    Article  CAS  Google Scholar 

  • Ulstrup KE, van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484

    Article  CAS  PubMed  Google Scholar 

  • van Oppen MJH, Gates RD (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883

    Article  PubMed  Google Scholar 

  • van Oppen MJH, Palstra FP, Piquet AMT, Miller DJ (2001) Patterns of coral-dinoflagellate associations in Acropora: Significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc Biol Sci Ser B 268:1759–1767

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the assistance of C. Birkeland, Dan Barshis, and Cheryl Squair at University of Hawaii; Peter Craig and Fale Tuilagi (US National Park Service, American Samoa); Seabird McKeon at the University of Florida; and Kirsten Oleson and Jason Ladner of Stanford University for their support in American Samoa; and the National Park of American Samoa. We would also like to thank the NSF Predoctoral fellowship program, the Woods Institute for the Environment, NOAA and the National Science Foundation for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Oliver.

Additional information

Communicated by Biology Editor Dr. Mark Warner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, T.A., Palumbi, S.R. Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30, 241–250 (2011). https://doi.org/10.1007/s00338-010-0696-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-010-0696-0

Keywords

Navigation