Skip to main content
Log in

Lyase activities of heterologous CpcS and CpcT for phycocyanin holo-β-subunit from Arthrospira platensis in Escherichia coli

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Arthrospira platensis is an economically important cyanobacterium; and it has been used widely in food and pharmaceutical industries. The phycocyanin (PC) from A. platensis is extremely valuable in medicine and molecular biology due to its antioxidation and anti-tumoring activity and applicability as fluorescence protein tag. In present study, two recombinant plasmids, one contained the phycocyanobilin (PCB)-producing genes (hox1 and pcyA) while the other contained the phycobiliprotein gene (cpcB) and the lyase gene (either cpcS/U or cpcT), were constructed and synchronically transferred into E. coli in order to test the the activities of relevant lyases for catalysing PCB addition to CpcB during synthesizing fluorescent PC holo-β-subunit (β-PC) of A. platensis. As was evidenced by the fluorescence emitted at a peak specific for PC, CpcB was successfully synthesized in E. coli, to which co-expressed PCBs attached though at a relatively low efficiency. The results showed that the attachment of PCBs to CpcB were carried out mainly by co-expressed CpcS/U but CpcB also showed some autocatalytic activity. Currently, no CpcT activity was detected in this E. coli expression system. Further studies will be conducted to improve the efficiency of fluorescent PC synthesis in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arciero, D. M., Dallas, J. L., and Glazer, A. N., 1988. In vitro attachment of bilins to apophycocyanin. II. Determination of the structures of tryptic bilin peptides derived from the phycocyanobilin adduct. Journal of Biological Chemistry, 263: 18350–18357.

    Google Scholar 

  • Benedetti, S., Benvenuti, F., Scoglio, S., and Canestrari, F., 2010. Oxygen radical absorbance capacity of phycocyanin and phycocyanobilin from the food supplement Aphanizomenon flos-aquae. Journal of Medicinal Food, 13(1): 223–227.

    Article  Google Scholar 

  • Biswas, A., Vasquez, Y. M., Dragomani, T. M., Kronfel, M. L., Williams, S. R., Alvey, R. M., Bryant, D. A., and Schluchter, W. M., 2010. Biosynthesis of cyanobacterial phycobiliproteins in Escherichia coli: Chromophorylation efficiency and specificity of all bilin lyases from Synechococcus sp. Strain PCC 7002. Applied and Environmental Microbiology, 76(9): 2729–2739.

    Article  Google Scholar 

  • Cobley, J. G., Clark, A. C., Weerasurya, S., Queseda, F. A., Xiao, J. Y., Bandrapali, N., D’Silva, I., Thounaojam, M., Oda, J. F., Sumiyoshi, T., and Chu, M. H., 2002. CpeR is an activator required for expression of the phycoerythrin operon(cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR). Molecular Microbiology, 44(6): 1517–1531.

    Article  Google Scholar 

  • Debreczeny, M. P., Sauer, K., Zhou, J., and Bryant, D. A., 1995. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 1. Monomers. Journal of Physical Chemistry, 99: 8412–8419.

    Article  Google Scholar 

  • Fairchild, C. D., Zhao, J. D., Zhou, J. H., Colson, S. E., Bryant, D. A., and Glazer, A. N., 1992. Phycocyanin α-subunit phycocyanobilin lyase. Proceedings of the National Academy of Sciences of the United States of America, 89: 7017–7021.

    Article  Google Scholar 

  • Fujisawa, T., Narikawa, R., Okamoto, S., Ehira, S., Yoshimura, H., Suzuki, I., Masuda, T., Mochimaru, M., Takaichi, S., Awai, K., Sekine, M., Horikawa, H., Yashiro, I., Omata, S., Takarada, H., Katano, Y., Kosugi, H., Tanikawa, S., Ohmori, K., Sato, N., Ikeuchi, M., Fujita, N., and Ohmori, M., 2010. Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Research, 17: 85–103

    Article  Google Scholar 

  • Ge, B. S., Sun, H. X., Feng, Y., Yang, J. Y., and Qin, S., 2009. Functional biosynthesis of an allophycocyan β-subunit in Escherichia coli. Journal of Bioscience and Bioengineering, 107(3): 246–249.

    Article  Google Scholar 

  • Glazer, A. N., 1985. Light harvesting by phycobilisomes. Annual Review of Biophysics and Biophysical Chemistry, 14: 47–77.

    Article  Google Scholar 

  • Guan, X. Y., Qin, S., Su, Z. L., Zhao, F. Q., Ge, B. S., Li, F. C., and Tang, X. X., 2007. Combinational biosynthesis of a fluorescent cyanobacterial holo-α-phycocyanin in Escherichia coli using one expression vector. Applied Biochemistry and Biotechnology, 142: 52–59.

    Article  Google Scholar 

  • Jung, L. J., Chan, C. F., and Glazer, A. N., 1995. Candidate genes for the phycoerythrocyanin α subunit lyase: Biochemical analysis of pecE and pecF tnterposon mutants. Journal of Biological Chemistry, 270: 12877–12884.

    Article  Google Scholar 

  • Landgraf, F. T., Forreite, C., Hurtado, P., Lamparter, T., and Hughes, J., 2001. Recombinant holophytochrome in Escherichia coli. FEBS Letters, 508: 459–462.

    Article  Google Scholar 

  • Li, H., and Sherman, L. A., 2002. Characterization of Synechocystis sp. Strain PCC 6803 and Δnbl mutants under nitrogen-deficient conditions. Archives of Microbiology, 178: 256–266.

    Article  Google Scholar 

  • MacColl, R., Csatorday, K., Berns, D. S., and Traeger, E., 1980. Chromophore interactions in allophycocyanin. Biochemistry-US, 19: 2817–2820.

    Article  Google Scholar 

  • Niu, J. F., Wang, G. C., Lin, X. Z., and Zhou, B. C., 2007. Large-scale recovery of C-phycocyanin from Spirulina platensis using expanded bed adsorption chromatography. Journal of Chromatography B, 850: 267–276.

    Article  Google Scholar 

  • Nyman, E. S., and Hynninen, P. H., 2004. Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. Photochemistry and Photobiology, 73: 1–2.

    Article  Google Scholar 

  • Ong, L. J., and Glazer, A. N., 1988. Structural studies of phycobiliproteins in unicellular marine cyanobacteria. In: Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models. Stevens, S. E., and Jr Bryant, D. A., eds., American Society of Plant Physiologists, Rockville, MD, 102–121.

    Google Scholar 

  • Rodríguez-Sánchez, R., Ortiz-Butrón, R., Blas-Valdivia, V., Hernández-García, A., and Cano-Europa, E., 2012. Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. Food Chemistry, 135(4): 2359–2365.

    Article  Google Scholar 

  • Saunée, N. A., Williams, S. R., Bryant, D. A., and Schluchter, W. M., 2008. Biogenesis of phycobiliproteins II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to Cys-82 of β-phycocyanin and Cys-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002. Journal of Biological Chemistry, 283(12): 7513–7522.

    Article  Google Scholar 

  • Scheer, H., and Zhao, K. H., 2008. Biliprotein maturation: the chromophore attachment. Molecular Microbiology, 68(2): 263–276.

    Article  Google Scholar 

  • Schmidt, M., Patel, A., Zhao, Y., and Reuter, W., 2007. Structural basis for the photochemistry of α-Phycoerythrocyanin. Biochemistry-US., 46: 416–423.

    Article  Google Scholar 

  • Shen, G. Z., Saunée, N. A., Gallo, E. F., Begovic, Z., Schluchter, W. M., and Bryant, D. A., 2004. Identification of novel phycobiliprotein lyases in cyanobacteria. In: Photosynthesis 2004 Light-harvesting Systems Workshop. Niederman, R. A., et al., eds., Saint Adele, Québec, 14–15.

    Google Scholar 

  • Shen, G. Z., Saunée, N. A., Williams, S. R., Gallo, E. F., Schluchter, W. M., and Bryant, D. A., 2006. Identification and characterization of a new class of bilin lyase: The cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to cys-153 on the β-Subunit of phycocyanin in Synechococcus sp. PCC 7002. Journal of Biological Chemistry, 281(26): 17768–17778.

    Article  Google Scholar 

  • Shen, G. Z., Schluchter, W. M., and Bryant, D. A., 2008. Biogenesis of phycobiliproteins I. cpcS-I and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phycocyanobilin lyase specific for β-phycocyanin and allophycocyanin subunits. Journal of Biological Chemistry, 283(12): 7503–7512.

    Article  Google Scholar 

  • Sidler, A., 1994. Phycobilisome and phycobiliprotein structures. In: The Molecular Biology of Cyanobacteria. Bryant, D. A., ed., Kluwer, Dordrecht, 139–216.

    Chapter  Google Scholar 

  • Storf, M., Parbel, A., Meyer, M., Strohmann, B., Scheer, H., Deng, M. G., Zheng, M., Zhou, M., and Zhao, K. H., 2001. Chromophore attachment to biliproteins: Specificity of PecE/PecF, a lyase-Isomerase for the photoactive 31-Cys-α84-phycoviolobilin chromophore of phycoerythrocyanin. Biochemistry-US, 40: 12444–12456.

    Article  Google Scholar 

  • Tooley, A. J., and Glazer, A. N., 2002. Biosynthesis of the cyanobacterial light-harvesting polypeptide phycoerythrocyanin holo-α-subunit in a heterologous host. Journal of Bacteriology, 184(17): 4666–4671.

    Article  Google Scholar 

  • Tooley, A. J., Cai, Y. A., and Glazer, A. N., 2001. Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-α subunit in a heterologous host. Proceedings of the National Academy of Sciences of the United States of America, 98(19): 10560–10565.

    Article  Google Scholar 

  • Yi, J. J., Zang, X. N., Zhang, X. C., Yuan, D. Y., Zhao, B. R., and Tang, L., 2011. Recombinant expression of a fluorescent phycocyanin holo-α-subunit from Arthrospira platensis in Escherichia coli. Periodical of Ocean University of China, 41(5): 59–65 (in Chinese).

    Google Scholar 

  • Zhao, K. H., Deng, M. G., Zheng, M., Zhou, M., Parbel, A., Storf, M., Meyer, M., Strohmann, B., and Scheer, H., 2000. Novel activity of a phycobiliprotein lyase: Both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon. FEBS Letters, 469: 9–13.

    Article  Google Scholar 

  • Zhao, K. H., Su, P., Tu, J. M., Wang, X., Liu, H., Plöscher, M., Eichacker, L., Yang, B., Zhou, M., and Scheer, H., 2007a. Phycobilin: Cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Proceedings of the National Academy of Sciences of the United States of America, 104(36): 14300–14305.

    Article  Google Scholar 

  • Zhao, K. H., Wu, D., Wang, L., Zhou, M., Storf, M., Bubenzer, C., Strohmann, B., and Scheer, H., 2002. Characterization of phycoviolobilin phycoerythrocyanin-α84-cystein-lyase-(isomerizing) from Mastigocladus laminosus. European Journal of Biochemistry, 269: 4542–4550.

    Article  Google Scholar 

  • Zhao, K. H., Zhang, J., Tu, J. M., Böhm, S., Plöscher, M., Eichacker, L., Bubenzer, C., Scheer, H., Wang, X., and Zhou, M., 2007b. Lyase activities of CpcS- and CpcT-like proteins from Nostoc PCC7120 and sequential reconstitution of binding sites of phycoerythrocyanin and phycocyanin β-subunits. Journal of Biological Chemistry, 282(47): 34093–34103.

    Article  Google Scholar 

  • Zhao, K. H., Zhu, J. P., Song, B., Zhou, M., Storf, M., Böhm, S., Bubenzer, C., and Scheer, H., 2004. Nonenzymatic chromophore attachment in biliproteins: Conformational control by the detergent Triton X-100. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1657: 131–145.

    Article  Google Scholar 

  • Zhao, K.H., Su, P., Li, J., Tu, J.M., Zhou, M., Bubenzer, C., and Scheer, H., 2006. Chromophore attachment to phycobiliprotein β-subunits: Phycocyanobilin cysteine-β84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena sp. PCC7120. Journal of Biological Chemistry, 281(13): 8573–8581.

    Article  Google Scholar 

  • Zhou, J., Gasparich, G. E., Stirewalt, V. L., de Lorimier, R., and Bryant, D. A., 1992. The cpcE and cpcF genes of Synechococcus sp. PCC 7002. Construction and phenotypic characterization of interposon mutants. Journal of Biological Chemistry, 267: 16138–16145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, J., Xu, D., Zang, X. et al. Lyase activities of heterologous CpcS and CpcT for phycocyanin holo-β-subunit from Arthrospira platensis in Escherichia coli . J. Ocean Univ. China 13, 497–502 (2014). https://doi.org/10.1007/s11802-014-2161-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-014-2161-0

Key words

Navigation