Skip to main content
Log in

Finitely convergent iterative methods with overrelaxations revisited

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We study the finite convergence of iterative methods for solving convex feasibility problems. Our key assumptions are that the interior of the solution set is nonempty and that certain overrelaxation parameters converge to zero, but with a rate slower than any geometric sequence. Unlike other works in this area, which require divergent series of overrelaxations, our approach allows us to consider some summable series. By employing quasi-Fejérian analysis in the latter case, we obtain additional asymptotic convergence guarantees, even when the interior of the solution set is empty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Burachik, R.S., Herman, D.B., Kaya, C.Y.: On Dykstra’s algorithm: finite convergence, stalling, and the method of alternating projections. Optim. Lett. 14, 1975–1987 (2020)

  3. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham, second ed., (2017). With a foreword by Hédy Attouch

  5. Bauschke, H.H., Dao, M.N.: On the finite convergence of the Douglas–Rachford algorithm for solving (not necessarily convex) feasibility problems in Euclidean spaces. SIAM J. Optim. 27, 507–537 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bauschke, H.H., Dao, M.N., Noll, D., Phan, H.M.: On Slater’s condition and finite convergence of the Douglas-Rachford algorithm for solving convex feasibility problems in Euclidean spaces. J. Global Optim. 65, 329–349 (2016)

  7. Bauschke, H.H., Noll, D., Phan, H.M.: Linear and strong convergence of algorithms involving averaged nonexpansive operators. J. Math. Anal. Appl. 421, 1–20 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bauschke, H.H., Wang, C., Wang, X., Xu, J.: On the finite convergence of a projected cutter method. J. Optim. Theory Appl. 165, 901–916 (2015)

    Article  MathSciNet  Google Scholar 

  9. Boţ, R.I., Csetnek, E.R.: Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements. Optimization 61, 35–65 (2012)

    Article  MathSciNet  Google Scholar 

  10. Borwein, J.M., Li, G., Tam, M.K.: Convergence rate analysis for averaged fixed point iterations in common fixed point problems. SIAM J. Optim. 27, 1–33 (2017)

    Article  MathSciNet  Google Scholar 

  11. Bruck, R.E., Reich, S.: A general convergence principle in nonlinear functional analysis. Nonlinear Anal. 4, 939–950 (1980)

    Article  MathSciNet  Google Scholar 

  12. Cegielski, A.: Iterative methods for fixed point problems in Hilbert spaces. Lecture Notes in Mathematics, vol. 2057. Springer, Heidelberg (2012)

  13. Cegielski, A., Reich, S., Zalas, R.: Regular sequences of quasi-nonexpansive operators and their applications. SIAM J. Optim. 28, 1508–1532 (2018)

    Article  MathSciNet  Google Scholar 

  14. Cegielski, A., Reich, S., Zalas, R.: Weak, strong and linear convergence of the CQ-method via the regularity of Landweber operators. Optimization 69, 605–636 (2020)

    Article  MathSciNet  Google Scholar 

  15. Cegielski, A., Zalas, R.: Properties of a class of approximately shrinking operators and their applications. Fixed Point Theory 15, 399–426 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Censor, Y., Chen, W., Pajoohesh, H.: Finite convergence of a subgradient projections method with expanding controls. Appl. Math. Optim. 64, 273–285 (2011)

    Article  MathSciNet  Google Scholar 

  17. Combettes, P.L.: The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 95, 155–270 (1996)

    Article  Google Scholar 

  18. Combettes, P.L.: Quasi-Fejérian analysis of some optimization algorithms, in Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000), vol. 8 of Stud. Comput. Math., North-Holland, Amsterdam, 2001, pp. 115–152

  19. Crombez, G.: Finding common fixed points of a class of paracontractions. Acta Math. Hungar. 103, 233–241 (2004)

    Article  MathSciNet  Google Scholar 

  20. Csetnek, E.R., Eberhard, A., Tam, M.K.: Convergence rates for boundedly regular systems, 2020, arXiv:abs/2004.00818

  21. De Bernardi, C.A., Miglierina, E.: A variational approach to the alternating projections method. J. Glob. Optim. (2021). https://doi.org/10.1007/s10898-021-01025-y

    Article  MathSciNet  MATH  Google Scholar 

  22. De Pierro, A.R., Iusem, A.N.: A finitely convergent “row-action” method for the convex feasibility problem. Appl. Math. Optim. 17, 225–235 (1988)

  23. Frankowska, H., Marchini, E.M., Mazzola, M.: Necessary optimality conditions for infinite dimensional state constrained control problems. J. Differ. Equ. 264, 7294–7327 (2018)

    Article  MathSciNet  Google Scholar 

  24. Fukushima, M.: A finitely convergent algorithm for convex inequalities. IEEE Trans. Autom. Control 27, 1126–1127 (1982)

    Article  MathSciNet  Google Scholar 

  25. Goebel, K., Reich, S.: Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Monographs and Textbooks in Pure and Applied Mathematics, vol. 83. Marcel Dekker Inc, New York (1984)

  26. Gurin, L., Polyak, B., Raik, E.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys 7, 1–24 (1967)

    Google Scholar 

  27. Hiriart-Urruty, J.-B.: New concepts in nondifferentiable programming, Bull. Soc. Math. France Mém., (1979), pp. 57–85. Analyse non convexe (Proc. Colloq., Pau, 1977)

  28. Iusem, A.N., Moledo, L.: A finitely convergent method of simultaneous subgradient projections for the convex feasibility problem. Mat. Appl. Comput. 5, 169–184 (1986)

    MathSciNet  MATH  Google Scholar 

  29. Iusem, A.N., Moledo, L.: On finitely convergent iterative methods for the convex feasibility problem. Bol. Soc. Br. Mat. 18, 11–18 (1987)

    Article  MathSciNet  Google Scholar 

  30. Khan, M.A., Peck, N.T.: On the interiors of production sets in infinite-dimensional spaces. J. Math. Econ. 18, 29–39 (1989)

    Article  MathSciNet  Google Scholar 

  31. Kolobov, V.I., Reich, S., Zalas, R.: Weak, strong, and linear convergence of a double-layer fixed point algorithm. SIAM J. Optim. 27, 1431–1458 (2017)

    Article  MathSciNet  Google Scholar 

  32. Kolobov, V.I., Reich, S., Zalas, R.: Finitely convergent deterministic and stochastic iterative methods for solving convex feasibility problems. Math. Program (2021). https://doi.org/10.1007/s10107-021-01628-z

    Article  MATH  Google Scholar 

  33. Luke, D.R., Teboulle, M., Thao, N.H.: Necessary conditions for linear convergence of iterated expansive, set-valued mappings. Math. Program 180, 1–31 (2020)

    Article  MathSciNet  Google Scholar 

  34. Luo, H., Wang, X., Lukens, B.: Variational analysis on the signed distance functions. J. Optim. Theory Appl. 180, 751–774 (2019)

    Article  MathSciNet  Google Scholar 

  35. Pang, C.H.J.: Finitely convergent algorithm for nonconvex inequality problems, (2014). arXiv:1405.7280

  36. Pang, C.H.J.: Set intersection problems: supporting hyperplanes and quadratic programming. Math. Program 149, 329–359 (2015)

    Article  MathSciNet  Google Scholar 

  37. Polyak, B.T.: Random algorithms for solving convex inequalities. In Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000), vol. 8 of Stud. Comput. Math., North-Holland, Amsterdam, pp. 409–422 (2001)

  38. Zhao, X., Ng, K.F., Li, C., Yao, J.-C.: Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems. Appl. Math. Optim. 78, 613–641 (2018)

    Article  MathSciNet  Google Scholar 

  39. Zălinescu, C.: Convex analysis in general vector spaces. World Scientific Publishing Co., Inc, River Edge, NJ (2002)

  40. Zălinescu, C.: On the use of the quasi-relative interior in optimization. Optimization 64, 1795–1823 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to an anonymous referee for pertinent comments and helpful suggestions.

Funding

This research was supported by the Israel Science Foundation (Grants Nos. 389/12 and 820/17), the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Zalas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolobov, V.I., Reich, S. & Zalas, R. Finitely convergent iterative methods with overrelaxations revisited. J. Fixed Point Theory Appl. 23, 57 (2021). https://doi.org/10.1007/s11784-021-00888-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-021-00888-8

Keywords

Mathematics Subject Classification

Navigation