Skip to main content
Log in

Necessary conditions for linear convergence of iterated expansive, set-valued mappings

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We present necessary conditions for monotonicity of fixed point iterations of mappings that may violate the usual nonexpansive property. Notions of linear-type monotonicity of fixed point sequences—weaker than Fejér monotonicity—are shown to imply metric subregularity. This, together with the almost averaging property recently introduced by Luke et al. (Math Oper Res, 2018. https://doi.org/10.1287/moor.2017.0898), guarantees linear convergence of the sequence to a fixed point. We specialize these results to the alternating projections iteration where the metric subregularity property takes on a distinct geometric characterization of sets at points of intersection called subtransversality. Subtransversality is shown to be necessary for linear convergence of alternating projections for consistent feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aragón Artacho, F.J., Mordukhovich, B.S.: Enhanced metric regularity and Lipschitzian properties of variational systems. J. Glob. Optim. 50(1), 145–167 (2011). https://doi.org/10.1007/s10898-011-9698-x

    Article  MathSciNet  MATH  Google Scholar 

  2. Aspelmeier, T., Charitha, C., Luke, D.R.: Local linear convergence of the ADMM/Douglas–Rachford algorithms without strong convexity and application to statistical imaging. SIAM J. Imaging Sci. 9(2), 842–868 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185–212 (1993)

    Article  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de mathématiques de la SMC Book Series. Springer, New York (2011)

    Google Scholar 

  6. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: applications. Set-Valued Var. Anal. 21, 475–501 (2013a). https://doi.org/10.1007/s11228-013-0238-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: theory. Set-Valued Var. Anal. 21, 431–473 (2013b). https://doi.org/10.1007/s11228-013-0239-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319–3363 (2010). https://doi.org/10.1090/S0002-9947-09-05048-X

    Article  MATH  Google Scholar 

  9. Bunt, L.N.H.: Bitdrage tot de theorie der konvekse puntverzamelingen. Ph.D. thesis, University of Groningen, Amsterdam (1934)

  10. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Monographs in Mathematics. Springer, New York (2009)

    Book  Google Scholar 

  11. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Transversality and alternating projections for nonconvex sets. Found. Comput. Math. 15(6), 1637–1651 (2015). https://doi.org/10.1007/s10208-015-9279-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Giselsson, P.: Tight global linear convergence rate bounds for Douglas–Rachford splitting (2015). arXiv:1506.01556

  13. Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013)

    Article  MathSciNet  Google Scholar 

  14. Ioffe, A.D.: Approximate subdifferentials and applications: III. Mathematika 36(71), 1–38 (1989)

    Article  MathSciNet  Google Scholar 

  15. Ioffe, A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55(3), 501 (2000). https://doi.org/10.1070/RM2000v055n03ABEH000292

    Article  MathSciNet  Google Scholar 

  16. Ioffe, A.D.: Regularity on a fixed set. SIAM J. Optim. 21(4), 1345–1370 (2011). https://doi.org/10.1137/110820981

    Article  MathSciNet  MATH  Google Scholar 

  17. Ioffe, A.D.: Nonlinear regularity models. Math. Program. 139(1–2), 223–242 (2013). https://doi.org/10.1007/s10107-013-0670-z

    Article  MathSciNet  MATH  Google Scholar 

  18. Kruger, A.Y.: About regularity of collections of sets. Set-Valued Anal. 14, 187–206 (2006)

    Article  MathSciNet  Google Scholar 

  19. Kruger, A.Y.: About stationarity and regularity in variational analysis. Taiwan. J. Math. 13(6A), 1737–1785 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kruger, A.Y., Thao, N.H.: Quantitative characterizations of regularity properties of collections of sets. J. Optim. Theory Appl. 164, 41–67 (2015). https://doi.org/10.1007/s10957-014-0556-0

    Article  MathSciNet  MATH  Google Scholar 

  21. Kruger, A.Y., Luke, D.R., Thao, N.H.: About subtransversality of collections of sets. Set-Valued Var. Anal. 25(4), 701–729 (2017)

    Article  MathSciNet  Google Scholar 

  22. Kruger, A.Y., Luke, D.R., Thao, N.H.: Set regularities and feasibility problems. Math. Program. B 168, 279–311 (2018). https://doi.org/10.1007/s10107-016-1039-x, arXiv:1602.04935

    Article  MathSciNet  Google Scholar 

  23. Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33, 216–234 (2008)

    Article  MathSciNet  Google Scholar 

  24. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence of alternating and averaged projections. Found. Comput. Math. 9(4), 485–513 (2009)

    Article  MathSciNet  Google Scholar 

  25. Luke, D.R., Thao, N.H., Tam, M.K.: Quantitative convergence analysis of iterated expansive, set-valued mappings. Math. Oper. Res. (2018). https://doi.org/10.1287/moor.2017.0898

    Article  MathSciNet  Google Scholar 

  26. Mordukhovich, B.: Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2006)

    Book  Google Scholar 

  27. Ngai, H.V., Théra, M.: Metric inequality, subdifferential calculus and applications. Set-Valued Anal. 9, 187–216 (2001). https://doi.org/10.1023/A:1011291608129

    Article  MathSciNet  MATH  Google Scholar 

  28. Noll, D., Rondepierre, A.: On local convergence of the method of alternating projections. Found. Comput. Math. 16(2), 425–455 (2016). https://doi.org/10.1007/s10208-015-9253-0

    Article  MathSciNet  MATH  Google Scholar 

  29. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  30. Penot, J.P.: Calculus Without Derivatives. Springer, New York (2013)

    Book  Google Scholar 

  31. Phan, H.: Linear convergence of the Douglas–Rachford method for two closed sets. Optimization 65, 369–385 (2016)

    Article  MathSciNet  Google Scholar 

  32. Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352(11), 5231–5249 (2000)

    Article  MathSciNet  Google Scholar 

  33. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1998)

    Google Scholar 

  34. Zheng, X.Y., Ng, K.F.: Linear regularity for a collection of subsmooth sets in Banach spaces. SIAM J. Optim. 19(1), 62–76 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Russell Luke.

Additional information

D. Russell Luke was supported in part by German Israeli Foundation Grant G-1253-304.6 and Deutsche Forschungsgemeinschaft Research Training Grant 2088 TP-B5.

Marc Teboulle was supported by German Israeli Foundation Grant G-1253-304.6 and Israel Science Foundation ISF Grant 1844-16.

Nguyen H. Thao was supported by German Israeli Foundation Grant G-1253-304.6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luke, D.R., Teboulle, M. & Thao, N.H. Necessary conditions for linear convergence of iterated expansive, set-valued mappings. Math. Program. 180, 1–31 (2020). https://doi.org/10.1007/s10107-018-1343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1343-8

Keywords

Mathematics Subject Classification

Navigation