Skip to main content
Log in

Linear Regularity and Linear Convergence of Projection-Based Methods for Solving Convex Feasibility Problems

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

For a finite/infinite family of closed convex sets with nonempty intersection in Hilbert space, we consider the (bounded) linear regularity property and the linear convergence property of the projection-based methods for solving the convex feasibility problem. Several sufficient conditions are provided to ensure the bounded linear regularity in terms of the interior-point conditions and some finite codimension assumptions. A unified projection method, called Algorithm B-EMOPP, for solving the convex feasibility problem is proposed, and by using the bounded linear regularity, the linear convergence results for this method are established under a new control strategy introduced here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: The relaxation method for linear inequalities. Can. J. Math. 6, 382–392 (1954)

    Article  MathSciNet  Google Scholar 

  2. Amemiya, I., Ando, T.: Convergence of random products of contractions in Hilbert space. Acta Sci Math (Szeged) 26, 239–244 (1965)

    MathSciNet  MATH  Google Scholar 

  3. Auslender, A. M\(\acute{e}\)thodes Num\(\acute{e}\)riques pour la R\(\acute{e}\)solution des Probl\(\grave{e}\)mes d’Optimisation avec Contraintes, Th\(\grave{e}\)se, Facult\(\acute{e}\) des Sciences, Grenoble (1969)

  4. Bakan, A., Deutsch, F., Li, W.: Strong CHIP, normality and linear regularity of convex sets. Trans. Am. Math. Soc. 357, 3831–3863 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bauschke, H.H.: Projection algorithms and monotone operators. Ph. D. thesis, Department of Mathematics, Simon Fraser University, Burnaby, BC (1996). http://oldweb.cecm.sfu.ca/preprints/1996pp.html

  6. Bauschke, H.H.: A norm convergence result on random products of relaxed projections in Hilbert space. Trans. Am. Math. Soc. 347, 1365–1373 (1995)

    Article  MathSciNet  Google Scholar 

  7. Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization. Math. Program Ser. A 86, 135–160 (1999)

    Article  MathSciNet  Google Scholar 

  8. Bauschke, H.H., Borwein, J.M., Tseng, P.: Bounded linear regularity, strong CHIP, and CHIP are distinct properties. J. Convex Anal. 7, 395–412 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Bauschke, H.H., Combettes, P.L., Kruk, S.G.: Extrapolation algorithm for affine-convex feasibility problems. Numer. Algorithms 41, 239–274 (2006)

    Article  MathSciNet  Google Scholar 

  10. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1, 185–212 (1993)

    Article  MathSciNet  Google Scholar 

  11. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  Google Scholar 

  12. Borwein, J.M., Li, G.Y., Yao, L.J.: Analysis of the convergence rate for the cyclic projection algorithm applied to basic semialgebraic convex sets. SIAM J. Optim. 24, 498–527 (2014)

    Article  MathSciNet  Google Scholar 

  13. Bregman, L.M.: The method of successive projection for finding a common point of convex sets. Sov. Math. Dokl. 6, 688–692 (1965)

    MATH  Google Scholar 

  14. Chui, C., Deutsch, F., Ward, J.D.: Constrained best approximation in Hilbert space. Constr. Approx. 6, 35–64 (1990)

    Article  MathSciNet  Google Scholar 

  15. Chui, C., Deutsch, F., Ward, J.D.: Constrained best approximation in Hilbert space II. J. Approx. Theory 71, 231–238 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Clarke, F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  17. Combettes, P.L.: The foundations of set theoretic estimation. Proc. IEEE 81, 182–208 (1993)

    Article  Google Scholar 

  18. Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 95, pp. 155–270. Academic Press, New York (1996)

    Google Scholar 

  19. Combettes, P.L.: Hilbertian convex feasibility problem: convergence of projection methods. Appl. Math. Optim. 35, 311–330 (1997)

    Article  MathSciNet  Google Scholar 

  20. Deutsch, F.: The method of alternating orthogonal projections. In: Singh, S.P. (ed.) Approximation Theory, Spline Functions and Application, vol. 356, pp. 105–121. Kluwer, The Netherlands (1992)

    Chapter  Google Scholar 

  21. Deutsch, F., Li, W., Ward, J.D.: A dual approach to constrained interpolation from a convex subset of Hilbert space. J. Approx. Theory 90, 385–414 (1997)

    Article  MathSciNet  Google Scholar 

  22. Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys. 7, 1–24 (1967)

    Article  Google Scholar 

  23. Hiriart-Urruty, J., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Grundlehren der Math Wiss, vol. 305. Springer-Verlag, New York (1993)

    MATH  Google Scholar 

  24. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Stand. 49, 263–265 (1952)

    Article  MathSciNet  Google Scholar 

  25. Hu, Y.H., Li, C., Yang, X.Q.: On convergence rates of linearized proximal algorithms for convex composite optimization with applications. SIAM J. Optim. 26, 1207–1235 (2016)

    Article  MathSciNet  Google Scholar 

  26. Kiwiel, K., Lopuch, B.: Surrogate projection methods for finding fixed points of firmly nonexpansive mappings. SIAM J. Optim. 7, 1084–1102 (1997)

    Article  MathSciNet  Google Scholar 

  27. Li, C., Ng, K.F., Pong, T.K.: The SECQ, linear regularity and the strong CHIP for infinite system of closed convex sets in normed linear spaces. SIAM J. Optim. 18, 643–665 (2007)

    Article  MathSciNet  Google Scholar 

  28. Li, C., Ng, K.F.: Strong CHIP for infinite system of closed convex sets in normed linear spaces. SIAM J. Optim. 16, 311–340 (2005)

    Article  MathSciNet  Google Scholar 

  29. Li, C., Ng, K.F.: The dual normal CHIP and linear regularity for infinite systems of convex sets in Banach spaces. SIAM J. Optim. 24, 1075–1101 (2014)

    Article  MathSciNet  Google Scholar 

  30. Motzkin, T.S., Schoenberg, I.J.: The relaxation method for linear inequalities. Can. J. Math. 6, 393–404 (1954)

    Article  MathSciNet  Google Scholar 

  31. Ng, K.F., Yang, W.H.: Regularities and their relations to error bounds. Math. Program Ser. A 99, 521–538 (2004)

    Article  MathSciNet  Google Scholar 

  32. Ottavy, N.: Strong convergence of projection-like methods in Hilbert spaces. J. Optim. Theory Appl. 56, 433–461 (1988)

    Article  MathSciNet  Google Scholar 

  33. Rockafellar, R.T.: Convex Analysis. Priceton University Press, Priceton, NJ (1970)

    Book  Google Scholar 

  34. von Neumann, J.: On rings of operators. Reduction theory. Ann. Math. 50:401–485. (1949) (the result of interest first appeared in 1933 in Lecture Notes)

    Article  MathSciNet  Google Scholar 

  35. Wang, J.H., Hu, Y.H., Li, C., Yao, J.C.: Linear convergence of CQ algorithms and applications in gene regulatory network inference. Inverse Probl. 33, 055017 (2017)

    Article  MathSciNet  Google Scholar 

  36. Yosida, K.: Functional Analysis. Grundlehren der Math. Wiss, vol. 123. Springer, New York (1980)

    MATH  Google Scholar 

  37. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge, NJ (2002)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for his valuable suggestions and remarks, especially for providing the relevant references [8, 9, 26], which helped to improve the presentation of the paper. The Xiaopeng Zhao was supported in part by the National Natural Science Foundation of China (Grant 11626168). The Kung Fu Ng was supported in part by an Earmarked Grant (GRF) from the Research Grant Council of Hong Kong (Project Nos. CUHK 14304014 and 14302516), and CUHK direct Grant 4053218. The Chong Li was supported in part by the National Natural Science Foundation of China (Grant 11571308). The Jen-Chih Yao was in part supported by the National Science Council of Taiwan under Grant MOST 105-2115-M-039-002-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Ng, K.F., Li, C. et al. Linear Regularity and Linear Convergence of Projection-Based Methods for Solving Convex Feasibility Problems. Appl Math Optim 78, 613–641 (2018). https://doi.org/10.1007/s00245-017-9417-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9417-1

Keywords

Mathematics Subject Classification

Navigation