Skip to main content
Log in

Forming Proterozoic basement within eastern Central Asian Orogenic Belt: Evidence from zircon U-Pb-Hf-O isotopes

中亚造山带东部元古宙基底组成:来自锆石U-Pb-Hf-O同位素的制约

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

As part of the mosaic of micro-continents within the Central Asian Orogenic Belt (CAOB), the Xing’an-Airgin Sum Block (XAB) features increasingly-recognized Meso-Neoproterozoic geological records. However, the origin, temporal-spatial distribution of ancient materials, and their roles in crust evolution remain to debate. This paper presents an integrated study of zircon U−Pb ages and Hf−O isotopes for Mesoproterozoic and Paleozoic granites from the Erenhot region of central Inner Mongolia, along eastern CAOB. The intrusion of 1450 Ma syenogranite denotes that the Precambrian basement of XAB extends from Sonid Zuoqi westward to Erenhot. The 384 and 281 Ma monzogranites containing Mesoproterozoic xenocrystic zircons possess Proterozoic-dominant two-stage Hf model ages, further suggesting the wide existence of Proterozoic crust beneath western XAB. Cyclic Proterozoic crustal growth and reworking seem to show close linkages with the orogenesis during relevant supercontinent cycles. 1450–1360 Ma juvenile crustal growth at Erenhot and synchronous ancient crust reworking at Sonid Zuoqi and Abagaqi were likely resulted from retreating subduction involved in Columbia breakup, while 1.2–1.0 Ga reworking and 0.9–0.7 Ga growth events within the Erenhot basement might respond to assembly and breakup of Rodinia, respectively. Besides, our work confirms that reworking of Neoproterozoic crust played important roles during Paleozoic multi-stage accretion of CAOB.

摘要

兴安-艾力格庙地块(XAB)作为中亚造山带(CAOB)内微陆块的一部分,存在大量中-新元古代地质记录。然而,对于古老地壳物质的起源、时空分布及其在地壳演化中的作用仍存在较大争议。基于此,本文对内蒙古二连浩特地区中元古代、古生代花岗岩的锆石U−Pb 年龄和Hf−O 同位素进行了综合研究。中元古代(1450 Ma)正长花岗岩的侵入标志着兴安-艾力格庙地块前寒武纪结晶基底可以从苏尼特左旗向西延伸至二连浩特北部。含中元古代继承锆石的晚古生代花岗岩具有元古宙的锆石Hf二阶段模式年龄,进一步表明地块西部之下广泛存在元古宙地壳物质。元古宙地壳的旋回生长和再造与超大陆旋回造山作用密切相关。此外,在1450∼1360 Ma期间,西部(二连浩特)新生地壳生长和东部(苏尼特左旗-阿巴嘎旗)古老地壳再造过程的差异可能是哥伦比亚超大陆裂解过程中后撤式俯冲作用的结果; 而在1.2∼1.0 Ga期间地壳再造和0.9∼0.7 Ga地壳生长则可能是罗迪尼亚超大陆碰撞聚合和裂解过程的响应。此外,也证实了在中亚造山带古生代多阶段增生过程中新元古代地壳再造发挥了重要作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JAHN B M, WU Fu-yuan, CHEN Bin. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic [J]. Episodes, 2000, 23(2): 82–92. DOI: https://doi.org/10.18814/epiiugs/2000/v23i2/001.

    Article  Google Scholar 

  2. JAHN B M, WU Fu-yuan, CHEN Bin. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic [J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2000, 91(1–2): 181–193. DOI: https://doi.org/10.1017/s0263593300007367.

    Article  Google Scholar 

  3. JAHN B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic [J]. Geological Society, London, Special Publications, 2004, 226(1): 73–100. DOI: https://doi.org/10.1144/gsl.sp.2004.226.01.05.

    Article  Google Scholar 

  4. HONG Da-wei, ZHANG Ji-sheng, WANG Tao, et al. Continental crustal growth and the supercontinental cycle: Evidence from the Central Asian Orogenic Belt [J]. Journal of Asian Earth Sciences, 2004, 23(5): 799–813. DOI: https://doi.org/10.1016/S1367-9120(03)00134-2.

    Article  Google Scholar 

  5. XIAO Wen-jiao, WINDLEY B F, SUN Shu, et al. A tale of amalgamation of three permo-Triassic collage systems in central Asia: Oroclines, sutures, and terminal accretion [J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477–507. DOI: https://doi.org/10.1146/annurev-earth-060614-105254.

    Article  Google Scholar 

  6. KRÖNER A, KOVACH V, BELOUSOVA E, et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt [J]. Gondwana Research, 2014, 25(1): 103–125. DOI: https://doi.org/10.1016/j.gr.2012.12.023.

    Article  Google Scholar 

  7. HE Zhen-yu, KLEMD R, YAN Li-li, et al. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt [J]. Earth-Science Reviews, 2018, 185: 1–14. DOI: https://doi.org/10.1016/j.earscirev.2018.05.012

    Article  Google Scholar 

  8. SHI Yu-ruo, JIAN Ping, KRÖNER A, et al. Zircon ages and Hf isotopic compositions of Ordovician and Carboniferous granitoids from central Inner Mongolia and their significance for early and Late Paleozoic evolution of the Central Asian Orogenic Belt [J]. Journal of Asian Earth Sciences, 2016, 117: 153–169. DOI: https://doi.org/10.1016/j.jseaes.2015.12.007.

    Article  Google Scholar 

  9. SUN Chen-yang, TANG Jie, XU Wen-liang, et al. Crustal accretion and reworking processes of micro-continental massifs within orogenic belt: A case study of the Erguna Massif, NE China [J]. Science China Earth Sciences, 2017, 60(7): 1256–1267. DOI: https://doi.org/10.1007/s11430-016-9033-5.

    Article  Google Scholar 

  10. XU Bei, ZHAO Pan, WANG Yan-yang, et al. The pre-Devonian tectonic framework of Xing’an-Mongolia orogenic belt (XMOB) in North China [J]. Journal of Asian Earth Sciences, 2015, 97: 183–196. DOI: https://doi.org/10.1016/j.jseaes.2014.07.020.

    Article  Google Scholar 

  11. ZHOU Jian-bo, WILDE S A, ZHAO Guo-chun, et al. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean [J]. Earth-Science Reviews, 2018, 186: 76–93. DOI: https://doi.org/10.1016/j.earscirev.2017.01.012.

    Article  Google Scholar 

  12. YUAN Ling-ling, ZHANG Xiao-hui, YANG Zhi-li. The timeline of prolonged accretionary processes in eastern Central Asian Orogenic Belt: Insights from episodic Paleozoic intrusions in central Inner Mongolia, North China [J]. GSA Bulletin, 2022, 134(3–4): 629–657. DOI: https://doi.org/10.1130/b35907.1

    Article  Google Scholar 

  13. WANG Zhi-wei, WANG Zhi-hui, ZHANG Yan-jie, et al. Linking–1.4–0.8 Ga volcano-sedimentary records in eastern Central Asian orogenic belt with southern Laurentia in supercontinent cycles [J]. Gondwana Research, 2022, 105: 416–431. DOI: https://doi.org/10.1016/j.gr.2021.09.019.

    Article  Google Scholar 

  14. SUN Li-xin, REN Bang-fang, ZHAO Feng-qing, et al. Zircon U-Pb dating and Hf isotopic compositions of the Mesoporterozoic granitic gneiss in Xilinhot Block, Inner Mongolia [J]. Geological Bulletin of China, 2013, 32(S1): 327–340. (in Chinese)

    Google Scholar 

  15. SUN Li-xin, REN Bang-fang, WANG Shu-qing, et al. Petrogenesis of the mesoproterozoic gneissic granite in the sonid left banner area, Inner Mongolia, and its tectonic implications [J]. Acta Geologica Sinica, 2018, 92(11): 2167–2189. (in Chinese)

    Google Scholar 

  16. SUN Li-xin, ZHANG Yun, LI Yan-feng, et al. Zircon U−Pb age and geochemistry of the Mesoproterozoic gneissic granite from Abaga Banner, Inner Mongolia and its tectonic significances [J]. Acta Petrologica Sinica, 2020, 36(3): 781–798. DOI: https://doi.org/10.18654/1000-0569/2020.03.09.

    Article  Google Scholar 

  17. HAN Jie, ZHOU Jian-bo, LI Long, et al. Mesoproterozoic (∼ 1.4 Ga) A-type gneissic granites in the Xilinhot terrane, NE China: First evidence for the break-up of Columbia in the eastern CAOB [J]. Precambrian Research, 2017, 296: 20–38. DOI: https://doi.org/10.1016/j.precamres.2017.04.043.

    Article  Google Scholar 

  18. YANG Zhen-ning, WANG Zhi-wei, ZHANG Li-yang, et al. Building the Proterozoic basement of the western Xing’an-Airgin Sum Block in the eastern Central Asian Orogenic Belt and its implications for the Nuna breakup and Rodinia assembly [J]. Precambrian Research, 2021, 366: 106420. DOI: https://doi.org/10.1016/j.precamres.2021.106420.

    Article  Google Scholar 

  19. WANG Zhi-wei, XU Wen-liang, PEI Fu-ping, et al. Geochronology and geochemistry of Early Paleozoic igneous rocks from the Zhangguangcai Range, Northeastern China: Constraints on tectonic evolution of the eastern Central Asian Orogenic Belt [J]. Lithosphere, 2017, 9(5): 803–827. DOI: https://doi.org/10.1130/1639.1.

    Article  Google Scholar 

  20. WANG Zhi-wei, XU Wen-liang, PEI Fu-ping, et al. Geochronology and geochemistry of Early Paleozoic igneous rocks of the Lesser Xing’an Range, NE China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt [J]. Lithos, 2016, 261: 144–163. DOI: https://doi.org/10.1016/j.lithos.2015.11.006.

    Article  Google Scholar 

  21. VERVOORT J D, KEMP A I S. Clarifying the zircon Hf isotope record of crust-mantle evolution [J]. Chemical Geology, 2016, 425: 65–75. DOI: https://doi.org/10.1016/j.chemgeo.2016.01.023.

    Article  Google Scholar 

  22. WU Fu-yuan, LI Xian-hua, ZHENG Yong-fei, et al. Lu-Hf isotopic systematics and their applications in petrology [J]. Acta Petrologica Sinica, 2007, 23(2): 185–220. (in Chinese)

    Google Scholar 

  23. KEMP A I S, HAWKESWORTH C J, FOSTER G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf−O isotopes in zircon [J]. Science, 2007, 315(5814): 980–983. DOI: https://doi.org/10.1126/science.1136154.

    Article  Google Scholar 

  24. YUAN Ling-ling, ZHANG Xiao-hui. Petrogenesis of the middle triassic erenhot granitoid batholith in central inner mongolia (northern China) with tectonic implication for the Triassic Mo mineralization in the eastern Central Asian Orogenic Belt [J]. Journal of Asian Earth Sciences, 2018, 165: 37–58. DOI: https://doi.org/10.1016/j.jseaes.2017.10.011.

    Article  Google Scholar 

  25. WANG Zhi-wei, PENG Jia, YU Jing-wen, et al. Meso- to Neoproterozoic zircon xenocrysts in late Carboniferous granite from the western Xing’an Block: Records of the supercontinent evolution [J]. Geological Bulletin of China, 2022, 41(2–3): 486–497. DOI: https://doi.org/10.12097/j.issn.1671-2552.2022.2-3.025. (in Chinese)

    Google Scholar 

  26. XU Bei, CHARVET J, CHEN Yan, et al. Middle paleozoic convergent orogenic belts in western inner mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the central asian orogenic belt [J]. Gondwana Research, 2013, 23(4): 1342–1364. DOI: https://doi.org/10.1016/j.gr.2012.05.015.

    Article  Google Scholar 

  27. XU Bei, WANG Zhi-wei, ZHANG Li-yang, et al. The Xing-Meng Intracontinent Orogenic Belt [J]. Acta Petrologica Sinica, 2018, 34(10): 2819–2844. (in Chinese)

    Google Scholar 

  28. YUAN Ling-ling, ZHANG Xiao-hui, YANG Zhi-li. Early Cretaceous gabbro-granite complex from central Inner Mongolia: Insights into initial rifting and crust-mantle interaction in the Northern China-Mongolia Basin-range tract [J]. Lithos, 2019, 324–325: 859–876. DOI: https://doi.org/10.1016/j.lithos.2018.12.010.

    Article  Google Scholar 

  29. LI Xian-hua, TANG Guo-qiang, GONG Bing, et al. Qinghu zircon: A working reference for microbeam analysis of U−Pb age and Hf and O isotopes [J]. Chinese Science Bulletin, 2013, 58: 4647–4654. DOI: https://doi.org/10.1007/S11434-013-5932-X.

    Article  Google Scholar 

  30. WU Fu-yuan, YANG Yue-heng, XIE Lie-wen, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U−Pb geochronology [J]. Chemical Geology, 2006, 234(1–2): 105–126. DOI: https://doi.org/10.1016/j.chemgeo.2006.05.003.

    Article  Google Scholar 

  31. BLICHERT-TOFT J, ALBAREDE F. The Lu−Hf geochemistry of chondrites and the evolution of the mantle-crust system [J]. Earth and Planetary Science Letters, 1997, 148(1–2): 243–258 (Erratum: Earth and Planetary Science Letters, 154, 349). DOI: https://doi.org/10.1016/S0012-821X(97)00040-X.

    Article  Google Scholar 

  32. GRIFFIN W L, PEARSON N J, BELOUSOVA E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites [J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133–147. DOI: https://doi.org/10.1016/S0016-7037(99)00343-9.

    Article  Google Scholar 

  33. GRIFFIN W L, WANG Xiang, JACKSON S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes [J]. Lithos, 2002, 61(3–4): 237–269. DOI: https://doi.org/10.1016/S0024-4937(02)00082-8.

    Article  Google Scholar 

  34. KOSCHEK G. Origin and significance of the SEM cathodoluminescence from zircon [J]. Journal of Microscopy, 1993, 171(3): 223–232. DOI: https://doi.org/10.1111/j.1365-2818.1993.tb03379.x.

    Article  Google Scholar 

  35. UTSUNOMIYA S, VALLEY J W, CAVOSIE A J, et al. Radiation damage and alteration of zircon from a 3.3 Ga porphyritic granite from the Jack Hills, Western Australia [J]. Chemical Geology, 2007, 236(1–2): 92–111. DOI: https://doi.org/10.1016/j.chemgeo.2006.09.003.

    Article  Google Scholar 

  36. PETERSSON A, SCHERSTÉN A, ANDERSSON J, et al. Zircon U−Pb, Hf and O isotope constraints on growth versus reworking of continental crust in the subsurface Greenville orogen, Ohio, USA [J]. Precambrian Research, 2015, 265: 313–327. DOI: https://doi.org/10.1016/j.precamres.2015.02.016.

    Article  Google Scholar 

  37. VALLEY J W, LACKEY J S, CAVOSIE A J, et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon [J]. Contributions to Mineralogy and Petrology, 2005, 150(6): 561–580. DOI: https://doi.org/10.1007/s00410-005-0025-8.

    Article  Google Scholar 

  38. BICKFORD M E, VAN SCHMUS W R, KARLSTROM K E, et al. Mesoproterozoic-trans-Laurentian magmatism: A synthesis of continent-wide age distributions, new SIMS U-Pb ages, zircon saturation temperatures, and Hf and Nd isotopic compositions [J]. Precambrian Research, 2015, 265: 286–312. DOI: https://doi.org/10.1016/j.precamres.2014.11.024.

    Article  Google Scholar 

  39. LI Chang-hai, LIU Zheng-hong, DONG Xiao-jie, et al. Mesoproterozoic (∼ 1.4 Ga) magmatism in the Liaoyuan Accretionary Belt, NE China: New implications for tectonic affinity and crustal evolution of microcontinents along the southern Central Asian Orogenic Belt [J]. Precambrian Research, 2021, 365: 106389. DOI: https://doi.org/10.1016/j.precamres.2021.106389.

    Article  Google Scholar 

  40. HE Zhen-yu, SUN Li-xin, MAO L, et al. Zircon U−Pb and Hf isotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth [J]. Chinese Science Bulletin, 2015, 60: 389–399. DOI: https://doi.org/10.1360/n972014-00898.

    Article  Google Scholar 

  41. YUAN Yu, ZONG Ke-qing, CAWOOD P A, et al. Implication of mesoproterozoic (∼1.4 Ga) magmatism within microcontinents along the southern central Asian orogenic belt [J]. Precambrian Research, 2019, 327: 314–326. DOI: https://doi.org/10.1016/j.precamres.2019.03.014.

    Article  Google Scholar 

  42. HE Zhen-yu, KLEMD R, ZHANG Ze-ming, et al. Mesoproterozoic continental arc magmatism and crustal growth in the eastern Central Tianshan Arc Terrane of the southern Central Asian Orogenic Belt: Geochronological and geochemical evidence [J]. Lithos, 2015, 236–237: 74–89. DOI: https://doi.org/10.1016/j.lithos.2015.08.009.

    Article  Google Scholar 

  43. HUANG Zong-ying, YUAN Chao, LONG Xiao-ping, et al. The cause for nuna breakup in the early to middle mesoproterozoic [J]. Precambrian Research, 2021, 362: 106287. DOI: https://doi.org/10.1016/j.precamres.2021.106287

    Article  Google Scholar 

  44. SHI Wen-xiang, LIAO Qun-an, HU Yuan-qing, et al. Characteristics of mesoproterozoic granites and their geological significances from middle Tianshan block, east Tianshan district, NW China [J]. Geological Science Technology Information, 2010, 29(1): 29–37. DOI: https://doi.org/10.1017/S000497271000/772. (in Chinese)

    Google Scholar 

  45. KONOPELKO D, KULLERUD K, APAYAROV F, et al. SHRIMP zircon chronology of HP-UHP rocks of the Makbal metamorphic complex in the Northern Tien Shan, Kyrgyzstan [J]. Gondwana Research, 2012, 22(1): 300–309. DOI: https://doi.org/10.1016/j.gr.2011.09.002.

    Article  Google Scholar 

  46. KRÖNER A, ALEXEIEV D V, ROJAS-AGRAMONTE Y, et al. Mesoproterozoic (Greenville-age) terranes in the Kyrgyz North Tianshan: Zircon ages and Nd−Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen [J]. Gondwana Research, 2013, 23(1): 272–295. DOI: https://doi.org/10.1016/j.gr.2012.05.004.

    Article  Google Scholar 

  47. GE Meng-chun, ZHOU Wen-xiao, YU Yang, et al. Dissoluotion and supracrustal rocks dating of Xilin Gol Complex, Inner Mongolia, China [J]. Earth Science Frontiers, 2011, 18(5): 182–195. (in Chinese)

    Google Scholar 

  48. WANG C Y, CAMPBELL I H, ALLEN C M, et al. Rate of growth of the preserved North American continental crust: Evidence from Hf and O isotopes in Mississippi detrital zircons [J]. Geochimica et Cosmochimica Acta, 2009, 73(3): 712–728. DOI: https://doi.org/10.1016/j.gca.2008.10.037

    Article  Google Scholar 

  49. SPENCER C J, CAWOOD P A, HAWKESWORTH C J, et al. Generation and preservation of continental crust in the Greenville Orogeny [J]. Geoscience Frontiers, 2015, 6(3): 357–372. DOI: https://doi.org/10.1016/j.gsf.2014.12.001.

    Article  Google Scholar 

  50. SPENCER C J, KIRKLAND C L, PRAVE A R, et al. Crustal reworking and orogenic styles inferred from zircon Hf isotopes: Proterozoic examples from the North Atlantic region [J]. Geoscience Frontiers, 2019, 10(2): 417–424. DOI: https://doi.org/10.1016/j.gsf.2018.09.008.

    Article  Google Scholar 

  51. CAWOOD P A, STRACHAN R A, PISAREVSKY S A, et al. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles [J]. Earth and Planetary Science Letters, 2016, 449: 118–126. DOI: https://doi.org/10.1016/j.epsl.2016.05.049.

    Article  Google Scholar 

  52. DENG F L, MACDOUGALL J D. Proterozoic depletion of the lithosphere recorded in mantle xenoliths from Inner Mongolia [J]. Nature, 1992, 360(6402): 333–336. DOI: https://doi.org/10.1038/360333a0.

    Article  Google Scholar 

  53. ZHANG Yan-long, LIU Chuan-zhou, GE Wen-chun, et al. Ancient sub-continental lithospheric mantle (SCLM) beneath the eastern part of the Central Asian Orogenic Belt (CAOB): Implications for crust-mantle decoupling [J]. Lithos, 2011, 126(3–4): 233–247. DOI: https://doi.org/10.1016/j.lithos.2011.07.022.

    Article  Google Scholar 

  54. ROBERTS N M W, SLAGSTAD T. Continental growth and reworking on the edge of the Columbia and rodinia supercontinents; 1.86–0.9 Ga accretionary orogeny in southwest fennoscandia [J]. International Geology Review, 2015, 57(11–12): 1582–1606. DOI: https://doi.org/10.1080/00206814.2014.958579.

    Article  Google Scholar 

  55. ZHANG Shuan-hong, ZHAO Yue, SANTOSH M. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent [J]. Precambrian Research, 2012, 222–223: 339–367. DOI: https://doi.org/10.1016/j.precamres.2011.06.003.

    Article  Google Scholar 

  56. MEERT J G, SANTOSH M. The Columbia supercontinent revisited [J]. Gondwana Research, 2017, 50: 67–83. DOI: https://doi.org/10.1016/j.gr.2017.04.011.

    Article  Google Scholar 

  57. ZHANG Shi-hong, LI Zheng-xiang, EVANS D A D, et al. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China [J]. Earth and Planetary Science Letters, 2012, 353–354: 145–155. DOI: https://doi.org/10.1016/j.epsl.2012.07.034.

    Article  Google Scholar 

  58. TANG Ming, JI Wei-qiang, CHU Xu, et al. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons [J]. Geology, 2021, 49(1): 76–80. DOI: https://doi.org/10.1130/g47745.1.

    Article  Google Scholar 

  59. HOPKINSON T N, HARRIS N B W, WARREN C J, et al. The identification and significance of pure sediment-derived granites [J]. Earth and Planetary Science Letters, 2017, 467: 57–63. DOI: https://doi.org/10.1016/j.epsl.2017.03.018.

    Article  Google Scholar 

  60. ZHAO Liang, GUO Feng, FAN Wei-ming, et al. Roles of subducted pelagic and terrigenous sediments in Early Jurassic mafic magmatism in NE China: Constraints on the architecture of paleo-Pacific subduction zone [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(3): 2525–2550. DOI: https://doi.org/10.1029/2018JB016487.

    Article  Google Scholar 

  61. CHAUVEL C, GARÇON M, BUREAU S, et al. Constraints from loess on the Hf−Nd isotopic composition of the upper continental crust [J]. Earth and Planetary Science Letters, 2014, 388: 48–58. DOI: https://doi.org/10.1016/j.epsl.2013.11.045.

    Article  Google Scholar 

  62. BINDEMAN I. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis [J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 445–478. DOI: https://doi.org/10.2138/rmg.2008.69.12.

    Article  Google Scholar 

  63. EILER J M. Oxygen isotope variations of basaltic lavas and upper mantle rocks [J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 319–364. DOI: https://doi.org/10.2138/gsrmg.43.1.319.

    Article  Google Scholar 

  64. MIAO Lai-cheng, FAN Wei-ming, LIU Dun-yi, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China [J]. Journal of Asian Earth Sciences, 2008, 32(5–6): 348–370. DOI: https://doi.org/10.1016/j.jseaes.2007.11.005.

    Article  Google Scholar 

  65. PEARCE J A, KEMPTON P D, NOWELL G M, et al. Hf−Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems [J]. Journal of Petrology, 1999, 40(11): 1579–1611. DOI: https://doi.org/10.1093/petroj/40.11.1579.

    Article  Google Scholar 

  66. WOODHEAD J D. Geochemistry of the Mariana arc (western Pacific): Source composition and processes [J]. Chemical Geology, 1989, 76(1–2): 1–24. DOI: https://doi.org/10.1016/0009-2541(89)90124-1.

    Article  Google Scholar 

  67. CLAYTON R N, REX R W, SYERS J K, et al. Oxygen isotope abundance in quartz from Pacific pelagic sediments [J]. Journal of Geophysical Research, 1972, 77(21): 3907–3915. DOI: https://doi.org/10.1029/JC077i021p03907.

    Article  Google Scholar 

  68. ZHAO Pan, FANG Jun-qin, XU Bei, et al. Early Paleozoic tectonic evolution of the Xing-Meng Orogenic Belt: Constraints from detrital zircon geochronology of western Erguna-Xing’an Block, North China [J]. Journal of Asian Earth Sciences, 2014, 95: 136–146. DOI: https://doi.org/10.1016/j.jseaes.2014.04.011.

    Article  Google Scholar 

  69. SHI Yu-ruo, LIU Dun-yi, ZHANG Qi, et al. SHRIMP dating of diorites and granites in southern Suzuoqi, Inner Mongolia [J]. Acta Geologica Sinica, 2004, 78: 6, 789–799. DOI: https://doi.org/10.1007/BF02873097.

    Google Scholar 

  70. JIAN Ping, LIU Dun-yi, KRÖNER A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth [J]. Lithos, 2008, 101(3–4): 233–259. DOI: https://doi.org/10.1016/j.lithos.2007.07.005

    Article  Google Scholar 

  71. TANG Jie, XU Wen-liang, WANG Feng, et al. Geochronology and geochemistry of neoproterozoic magmatism in the erguna massif, NE China: Petrogenesis and implications for the breakup of the rodinia supercontinent [J]. Precambrian Research, 2013, 224: 597–611. DOI: https://doi.org/10.1016/j.precamres.2012.10.019.

    Article  Google Scholar 

  72. LI Meng-tong, TANG Jun, WANG Zhi-wei, et al. Geochronology and geochemistry of the Early Carboniferous volcanic rocks in Sonid Zuoqi, Inner Mongolia: Implication for the Carboniferous tectonic evolution and crustal nature of the eastern Central Asia Orogenic Belt [J]. Acta Petrologica Sinica, 2020, 36: 799–819. DOI: https://doi.org/10.18654/1000-0569%2F2020.03.10.

    Article  Google Scholar 

  73. JACKSON S E, PEARSON N J, GRIFFIN W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U − Pb zircon geochronology [J]. Chemical Geology, 2004, 211: 47–69.

    Article  Google Scholar 

  74. WOODHEAD J D, HERGT J M. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination [J]. Geostandards and Geoanalytical Research, 2005, 29: 183–195.

    Article  Google Scholar 

  75. MOREL M L A, NEBEL O, NEBEL-JACOBSEN Y J, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS [J]. Chemical Geology, 2008, 255: 231–235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WANG Zhi-wei and YUAN Ling-ling provided the concept and edited the draft of manuscript. ZHU Tai-chang and YU Jing-wen completed U−Pb−Hf isotopes analysis, data processing and description, as well as figure drawing. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Ling-ling Yuan  (袁玲玲).

Additional information

Conflict of interest

WANG Zhi-wei, ZHU Tai-chang, YU Jing-wen, and YUAN Ling-ling declare that they have no conflict of interest.

Foundation item: Projects(41873035, 41802053) supported by the National Natural Science Foundation of China; Project(ZD2021015) supported by the Science and Technology Project of Hebei Education Department, China; Project(SCRM2116) supported by the Opening Foundation of Hebei Key Laboratory of Strategic Critical Mineral Resources, China; Project (202045004) supported by the Scientific Research Starting Foundation of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zw., Zhu, Tc., Yu, Jw. et al. Forming Proterozoic basement within eastern Central Asian Orogenic Belt: Evidence from zircon U-Pb-Hf-O isotopes. J. Cent. South Univ. 29, 3088–3105 (2022). https://doi.org/10.1007/s11771-022-5094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5094-6

Key words

关键词

Navigation