Skip to main content
Log in

Crustal accretion and reworking processes of micro-continental massifs within orogenic belt: A case study of the Erguna Massif, NE China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

This paper summarizes the geochronological, geochemical and zircon Hf isotopic data for Mesozoic granitoids within the Erguna Massif, NE China, and discusses the spatial-temporal variation of zircon Hf isotopic compositions, with the aim of constraining the accretion and reworking processes of continental crust within the Erguna Massif, and shedding light on the crustal evolution of the eastern segment of the Central Asian Orogenic Belt. Based on the zircon U-Pb dating results, the Mesozoic granitic magmatisms within the Erguna Massif can be subdivided into five stages: Early-Middle Triassic (249–237 Ma), Late Triassic (229–201 Ma), Early-Middle Jurassic (199–171 Ma), Late Jurassic (155–149 Ma), and Early Cretaceous (145–125 Ma). The Triassic to Early-Middle Jurassic granitoids are mainly I-type granites and minor adakitic rocks, whereas the Late Jurassic to Early Cretaceous granitoids are mainly A-type granites. This change in magmatism is consistent with the southward subduction of the Mongol-Okhotsk oceanic plate and subsequent collision and crustal thickening, followed by post-collision extension. Zircon Hf isotopic data indicate that crustal accretion of the Erguna Massif occurred in the Mesoproterozoic and Neoproterozoic. Zircon εHf(t) values increase gradually over time, whereas two-stage model (T DM2) ages decrease throughout the Mesozoic. The latter result indicates a change in the source of granitic magmas from the melting of ancient crust to more juvenile crust. Zircon εHf(t) values also exhibit spatial variations, with values decreasing northwards, whereas TDM2 ages increase. This pattern suggests that, moving from south to north, there is an increasing component of ancient crustal material within the lower continental crust of the Erguna Massif. Even if at the same latitude, the zircon Hf isotopic compositions are also inconsistent. These results reveal lateral and vertical heterogeneities in the lower continental crust of the Erguna Massif during the Mesozoic, which we use as the basis of a structural and tectonic model for this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362: 144–146

    Article  Google Scholar 

  • Belousova E A, Kostitsyn Y A, Griffin W L, Begg G C, O’Reilly S Y, Pearson N J. 2010. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos, 119: 457–466

    Article  Google Scholar 

  • Campbell I H, Taylor S R. 1983. No water, no granites—No oceans, no continents. Geophys Res Lett, 10: 1061–1064

    Article  Google Scholar 

  • Cao H H, Xu W L, Pei F P, Wang Z W, Wang F, Wang Z J. 2013. Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block. Lithos, 170-171: 191–207

    Article  Google Scholar 

  • Cawood P A, Hawkesworth C J, Dhuime B. 2013. The continental record and the generation of continental crust. Geol Soc Am Bull, 125: 14–32

    Article  Google Scholar 

  • Chapman J B, Ducea M N, De Celles P G, Profeta L. 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43: 919–922

    Article  Google Scholar 

  • Chen Z G, Zhang L C, Lu B Z, Li Z L, Wu H Y, Xiang P, Huang S W. 2010. Geochronology and geochemistry of the Taipingchuan coppermolybdenum deposit in Inner Mongolia, and its geological significances (in Chinese). Acta Petrol Sin, 26: 1437–1449

    Article  Google Scholar 

  • Chiaradia M. 2015. Crustal thickness control on Sr/Y signatures of recent arc magmas: An Earth scale perspective. Sci Rep, 5: 8115

    Article  Google Scholar 

  • De Paolo D J, Linn A M, Schubert G. 1991. The continental crustal age distribution: Methods of determining mantle separation ages from Sm-Nd isotopic data and application to the southwestern United States. J Geophys Res, 96: 2071–2088

    Article  Google Scholar 

  • Dhuime B, Hawkesworth C, Cawood P. 2011. When continents formed. Science, 331: 154–155

    Article  Google Scholar 

  • Dhuime B, Hawkesworth C J, Cawood P A, Storey C D. 2012. A change in the geodynamics of continental growth 3 billion years ago. Science, 335: 1334–1336

    Article  Google Scholar 

  • Dong Y, Ge W C, Yang H, Zhao G C, Wang Q H, Zhang Y L, Su L. 2014. Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in the central Great Xing’an Range, NE China, and its tectonic implications. Lithos, 205: 168–184

    Article  Google Scholar 

  • Ge W C, Li X H, Lin Q, Sun D Y, Wu F Y, Yun S Y. 2001. Geochemistry of Early Cretaceous alkaline rhyolites from Hulun Lake, Daxing’anling and its tectonic implications (in Chinese). Chin J Geol, 36: 176–183

    Google Scholar 

  • Ge W C, Wu F Y, Zhou C Y, Zhang J H. 2007. Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications. Chin Sci Bull, 52: 3416–3427

    Article  Google Scholar 

  • Girardi J D, Patchett P J, Ducea M N, Gehrels G E, Cecil M R, Rusmore M E, Woodsworth G J, Pearson D M, Manthei C, Wetmore P. 2012. Elemental and isotopic evidence for granitoid genesis from deep-seated sources in the coast mountains batholith, British Columbia. J Petrol, 53: 1505–1536

    Article  Google Scholar 

  • Glazner A F, Bartley J M, Coleman D S, Gray W, Taylor R Z. 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers? Gsa Today, 14: 4–11

    Article  Google Scholar 

  • Guo F, Fan W M, Gao X F, Li C W, Miao L C, Zhao L, Li H X. 2010. Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China: Constraints on tectonic framework and Phanerozoic crustal growth. Lithos, 120: 563–578

    Article  Google Scholar 

  • Guo F, Nakamuru E, Fan W, Kobayoshi K., Li C. 2007. Generation of palaeocene adakitic andesites by magma mixing: Yanji Area, NE China. J Petrol, 48: 41–55

    Article  Google Scholar 

  • Hawkesworth C J, Kemp A I S. 2006. The differentiation and rates of generation of the continental crust. Chem Geol, 226: 134–143

    Article  Google Scholar 

  • Hong D W, Huang H Z, Xiao Y J, Xu H M, Jin M Y. 1994. The Permian alkaline granites in Central Inner Mongolia and their geodynamic significance (in Chinese). Acta Geol Sin, 68: 219–230

    Google Scholar 

  • Inner Mongolian Bureau of Geology Mineral Resources (IMBGMR). 1996. Lithostratigraphy of Inner Mongolia (in Chinese). Wuhan: China University of Geosciences Press. 342

    Google Scholar 

  • Jacobsen S B. 1988. Isotopic and chemical constraints on mantle-crust evolution. Geochim Cosmochim Acta, 52: 1341–1350

    Article  Google Scholar 

  • Jahn B, Capdevila R, Liu D Y, Vernon A, Badarch G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. J Asian Earth Sci, 23: 629–653

    Article  Google Scholar 

  • Jahn B M, Wu F Y, Chen B. 2000a. Massive granitoid generation in central Asia: Nd isotopic evidence and implication for continental growth in the Phanerozoic. Episodes, 23: 82–92

    Google Scholar 

  • Jahn B, Wu F Y, Chen B. 2000b. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans R Soc Edinb-Earth Sci, 91: 181–193

    Article  Google Scholar 

  • Jahn B M, Wu F Y, Hong D. 2000c. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from east-central Asia. J Earth Syst Sci, 109: 5–20

    Article  Google Scholar 

  • Jiang N, Liu Y, Zhou W, Yang J, Zhang S. 2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochim Cosmochim Acta, 71: 2591–2608

    Article  Google Scholar 

  • Jiang S H, Nie F J, Su Y J, Bai D M, Liu Y F. 2010a. Geochronology and origin of the Erdenet superlarge Cu-Mo deposit in Mongolia (in Chinese). Acta Geosci Sin, 31: 289–306

    Google Scholar 

  • Jiang S H, Nie F J, Su Y J, Cai J X, Ding Z. 2010b. The geological features and origin of the Tumurtin Ovoo large-scale Zinc deposit, Mongolia (in Chinese). Acta Geosci Sin, 31: 321–330

    Google Scholar 

  • Li J Y, Niu B G, Song B. 1999. Crustal Formation and Evolution of Nothern Changbai Mountains (in Chinese). Beijing: Geological Publishing House. 137

    Google Scholar 

  • Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo- Pacific Plate. J Asian Earth Sci, 26: 207–224

    Article  Google Scholar 

  • Li Y, Ding L L, Xu W L, Wang F, Tang J, Zhao S, Wang Z J. 2015. Geochronology and geochemistry of muscovite granite in Sunwu area, NE China: Implications for the timing of closure of the Mongol-Okhotsk Ocean (in Chinese). Acta Petrol Sin, 31: 56–66

    Google Scholar 

  • Li Y, Xu W L, Wang F, Tang J, Pei F P, Wang Z J. 2014. Geochronology and geochemistry of late Paleozoic volcanic rocks on the western margin of the Songnen-Zhangguangcai Range Massif, NE China: Implications for the amalgamation history of the Xing’an and Songnen-Zhangguangcai Range massifs. Lithos, 205: 394–410

    Article  Google Scholar 

  • Liu W, Siebel W, Li X J, Pan X F. 2005. Petrogenesis of the Linxi granitoids, northern Inner Mongolia of China: Constraints on basaltic underplating. Chem Geol, 219: 5–35

    Article  Google Scholar 

  • Lu L Z, Xu W L. 2011. Petrography (in Chinese). Beijing: Geological Publishing House. 377

    Google Scholar 

  • Maitre R W L. 1989. A Classification of Igneous Rocks and Glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Oxford: Blackwell Scientific Publications. 193

    Google Scholar 

  • Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79: 1–24

    Article  Google Scholar 

  • Meng E, Xu W L, Pei F P, Yang D B, Yu Y, Zhang X Z. 2010. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China: Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics, 485: 42–51

    Article  Google Scholar 

  • Meng E, Xu W L, Yang D B, Qiu K F, Li C H, Zhu H T. 2011. Zircon U-Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications (in Chinese). Acta Petrol Sin, 27: 1209–1226

    Google Scholar 

  • Orolmaa D, Erdenesaihan G, Borisenko A S, Fedoseev G S, Babich V V, Zhmodik S M. 2008. Permian-Triassic granitoid magmatism and metallogeny of the Hangayn (central Mongolia). Rus Geol Geophys, 49: 534–544

    Article  Google Scholar 

  • Paterson S R, Ducea M N. 2015. Arc magmatic tempos: Gathering the evidence. Elements, 11: 91–98

    Article  Google Scholar 

  • Petford N, Cruden A R, McCaffrey K J W, Vigneresse J L. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408: 669–673

    Article  Google Scholar 

  • Pitcher W S. 1997. The Nature and Origin of Granite. 2nd ed. London: Chapman & Hall. 358

    Book  Google Scholar 

  • Qin X F, Yin Z G, Wang Y, Guo Y S, Liu X G, Zhou S Q. 2007. Early paleozoic adakitic rocks in mohe area at the northern end of the da hinggan mountains and their geoligical significance (in Chinese). Acta Petrol Sin, 23: 1501–1511

    Google Scholar 

  • Richards J P, Kerrich R. 2007. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econ Geol, 102: 537–576

    Article  Google Scholar 

  • Roberts N M W, Van Kranendonk M J, Parman S, Clift P D. 2015. Continent formation through time. Geol Soc Lond Spec Publ, 389: 1–16

    Article  Google Scholar 

  • Rudnick R L. 1995. Making continental crust. Nature, 378: 571–578

    Article  Google Scholar 

  • Shao J, Li Y F, Zhou Y H, Wang H B, Zhang J. 2015. Neo-Archaean magmatic event in Erguna Massif of northeast China: Evidence from the zircon LA-ICP-MS dating of the gneissic monzogranite from the drill (in Chinese). J Jilin Univ-Earth Sci Ed, 45: 364–373

    Google Scholar 

  • She H Q, Li J W, Xiang A P, Guan J D, Yang Y C, Zhang D Q, Tan G, Zhang B. 2012. U-pb ages of the zircons from primary rocks in middle-northern daxinganling and its implications to geotectonic evolution (in Chinese). Acta Petrol Sin, 28: 571–594

    Google Scholar 

  • She H Q, Liang Y W, Li J W, Guan J D, Zhang D Q, Yang Y C, Xiang A P, Jin J, Tan G, Zhang B. 2011. The Early-Mesozoic magmatic activity at Moerdaoga district in Inner Mongolia and its geodynamic implication (in Chinese). J Jilin Univ-Earth Sci Ed, 41: 1831–1864

    Google Scholar 

  • Sui Z M, Ge W C, Wu F Y, Xu X C, Wang Q H. 2006. U-Pb chronology in zircon from Harabaqi granitic pluton in northeastern Daxing’ anling area and its origin (in Chinese). Glob Geol, 25: 229–236

    Google Scholar 

  • Sui Z M, Ge W C, Xu X C, Zhang J H. 2009. Characteristics and geological implications of the Late Paleozoic post-orogenic Shierzhan granite in the Great Xing’an Range (in Chinese). Acta Petrol Sin, 25: 2679–2686

    Google Scholar 

  • Sun D Y, Gou J, Wang T H, Ren Y S, Liu Y J, Guo H Y, Liu X M, Hu Z C. 2013. Geochronological and geochemical constraints on the Erguna massif basement, NE China-subduction history of the Mongol-Okhotsk oceanic crust. Int Geol Rev, 55: 1801–1816

    Article  Google Scholar 

  • Sun D Y, Wu F Y, Li H M, Lin Q. 2001. Emplacement age of the postorogenic A-type granites in Northwestern Lesser Xing’an Ranges, and its relationship to the eastward extension of Suolushan-Hegenshan-Zhalaite collisional suture zone. Chin Sci Bull, 46: 427–432

    Article  Google Scholar 

  • Sun L X, Ren B F, Zhao F Q, Ji S P, Geng J Z. 2013. Late Paleoproterozoic magmatic records in the Erguna massif: Evidences from the zircon U-Pb dating of granitic gneisses (in Chinese). Geol Bull China, 32: 341–352

    Google Scholar 

  • Tang J, Xu W L, Wang F, Wang W, Xu M J, Zhang Y H. 2013. Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: Petrogenesis and implications for the breakup of the Rodinia supercontinent. Precambrian Res, 224: 597–611

    Article  Google Scholar 

  • Tang J, Xu W L, Wang F, Wang W, Xu M J, Zhang Y H. 2014. Geochronology and geochemistry of Early-Middle Triassic magmatism in the Erguna Massif, NE China: Constraints on the tectonic evolution of the Mongol-Okhotsk Ocean. Lithos, 184-187: 1–16

    Article  Google Scholar 

  • Tang J, Xu W L, Wang F, Zhao S, Li Y. 2015. Geochronology, geochemistry, and deformation history of Late Jurassic-Early Cretaceous intrusive rocks in the Erguna Massif, NE China: Constraints on the late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt. Tectonophysics, 658: 91–110

    Article  Google Scholar 

  • Tang J, Xu W L, Wang F, Zhao S, Wang W. 2016. Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Res, 31: 218–240

    Article  Google Scholar 

  • Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford: Blackwell Scientific Publications. 312

    Google Scholar 

  • Wang F, Xu W L, Gao F H, Meng E, Cao H, Zhao L, Yang Y. 2012a. Tectonic history of the Zhangguangcailing Group in eastern Heilongjiang Province, NE China: Constraints from U-Pb geochronology of detrital and magmatic zircons. Tectonophysics, 566-567: 105–122

    Google Scholar 

  • Wang F, Xu W L, Meng E, Cao H H, Gao F H. 2012b. Early Paleozoic amalgamation of the Songnen-Zhangguangcai Range and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt: Geochronological and geochemical evidence from granitoids and rhyolites. J Asian Earth Sci, 49: 234–248

    Article  Google Scholar 

  • Wang F, Xu W L, Xu Y G, Gao F, Ge W. 2015. Late Triassic bimodal igneous rocks in eastern Heilongjiang Province, NE China: Implications for the initiation of subduction of the Paleo-Pacific Plate beneath Eurasia. J Asian Earth Sci, 97: 406–423

    Article  Google Scholar 

  • Wang T H, Zhang S Y, Sun D Y, Gou J, Ren Y S, Wu P F, Liu X M. 2014. Zircon U-Pb ages and Hf isotopic characteristics of Mesozoic granitoids from southern Manzhouli, Inner Mongolia (in Chinese). Glob Geol, 33: 26–38

    Google Scholar 

  • Wang W, Xu W L, Wang F, Meng E. 2012. Zircon U-Pb chronology and assemblages of Mesozoic granitoids in the Manzhouli-Erguna area, NE China: Constraints on the regional tectonic evolution (in Chinese). Geol J China Univer, 18: 88–105

    Google Scholar 

  • Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett, 64: 295–304

    Article  Google Scholar 

  • Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308: 841–844

    Article  Google Scholar 

  • Windley B F, Alexeiev D, Xiao W, Kroner A, Badarch G. 2007. Tectonic models for accretion of the central Asian orogenic belt. J Geol Soc, 164: 31–47

    Article  Google Scholar 

  • Windley B F, Allen M B, Zhang C, Zhao Z Y, Wang G R. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia. Geology, 18: 128–131

    Article  Google Scholar 

  • Wu F Y, Jahn B, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C, Sun D Y. 2003. Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 67: 191–204

    Article  Google Scholar 

  • Wu F Y, Jahn B, Wilde S, Sun D Y. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328: 89–113

    Article  Google Scholar 

  • Wu F Y, Sun D Y, Ge W C, Zhang Y B, Grant M L, Wilde S A, Jahn B M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. J Asian Earth Sci, 41: 1–30

    Article  Google Scholar 

  • Wu F Y, Sun D Y, Li H M, Jahn B, Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem Geol, 187: 143–173

    Article  Google Scholar 

  • Wu F Y, Sun D Y, Lin Q. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China (in Chinese). Acta Petrol Sin, 15: 181–189

    Google Scholar 

  • Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol, 234: 105–126

    Article  Google Scholar 

  • Wu F Y, Zhao G C, Sun D Y, Wilde S A, Yang J H. 2007. The Hulan Group: Its role in the evolution of the Central Asian orogenic belt of NE China. J Asian Earth Sci, 30: 542–556

    Article  Google Scholar 

  • Wu G, Sun F Y, Zhao C S, Li Z T, Zhao A L, Pang Q B, Li G Y. 2005. Discovery of the Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance. Chin Sci Bull, 50: 2733–2743

    Article  Google Scholar 

  • Xiao W J, Windley B F, Hao J, Zhai M G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22: 1069

    Article  Google Scholar 

  • Xiao W J, Zhang L C, Qin K Z, Sun S, Li J L. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia. Am J Sci, 304: 370–395

    Article  Google Scholar 

  • Xu M J, Xu W L, Wang F, Gao F H, Yu J J. 2013. Geochronology and geochemistry of the Early Jurassic granitoids in the central Lesser Xing’an Range, NE China and its tectonic implications (in Chinese). Acta Petrol Sin, 29: 354–368

    Google Scholar 

  • Xu P, Wu F Y, Xie L W, Yang Y H. 2004. Hf isotopic compositions of the standard zircons for U-Pb dating. Chin Sci Bull, 49: 1642–1648

    Article  Google Scholar 

  • Xu W L, Ji W Q, Pei F P, Meng E, Yu Y, Yang D B, Zhang X. 2009. Triassic volcanism in eastern Heilongjiang and Jilin Provinces, NE China: Chronology, geochemistry, and tectonic implications. J Asian Earth Sci, 34: 392–402

    Article  Google Scholar 

  • Xu W L, Pei F P, Wang F, Meng E, Ji W Q, Yang D B, Wang W. 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. J Asian Earth Sci, 74: 167–193

    Article  Google Scholar 

  • Yakubchuk A. 2002. The Baikalide-Altaid, Transbaikal-Mongolian and North Pacific orogenic collages: Similarity and diversity of structural patterns and metallogenic zoning. Geol Soc Lond Spec Publ, 204: 273–297

    Article  Google Scholar 

  • Yakubchuk A. 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model. J Asian Earth Sci, 23: 761–779

    Article  Google Scholar 

  • Yang J H, Wu F Y, Shao J A, Wilde S A, Xie L W, Liu X M. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planet Sci Lett, 246: 336–352

    Article  Google Scholar 

  • Yarmolyuk V V, Kovalenko V I, Salnikova E B, Budnikov S V, Kovach V P, Kotov A B, Ponomarchuk V A. 2002. Tectono-magmatic zoning, magma sources, and geodynamics of the Early Mesozoic Mongolia-Transbaikal Province. Geotectonics, 36: 293–311

    Google Scholar 

  • Yu J J, Wang F, Xu W L, Gao F H, Pei F P. 2012. Early Jurassic mafic magmatism in the Lesser Xing’an-Zhangguangcai Range, NE China, and its tectonic implications: Constraints from zircon U-Pb chronology and geochemistry. Lithos, 142-143: 256–266

    Article  Google Scholar 

  • Zhang Q, Pan G Q, Li C D, Jin W J, Jia X Q. 2007. Does fractional crystallization occur in granitic magma? Some crucial questions on granite study (2) (in Chinese). Acta Petrol Sin, 23: 1239–1251

    Google Scholar 

  • Zhao S, Xu W L, Tang J, Li Y, Guo P. 2016a. Timing of formation and tectonic nature of the purportedly Neoproterozoic Jiageda Formation of the Erguna Massif, NE China: Constraints from field geology and U-Pb geochronology of detrital and magmatic zircons. Precambrian Res, 281: 585–601

    Article  Google Scholar 

  • Zhao S, Xu W L, Tang J, Li Y, Guo P. 2016b. Neoproterozoic magmatic events and tectonic attribution of the Erguna Massif: Constraints from geochronological, geochemical and Hf isotopic data of intrusive rocks (in Chinese). Earth Sci, 41: 1803–1829

    Google Scholar 

  • Zhao S, Xu W L, Wang F, Wang W, Tang J, Zhang Y H. 2016c. Neoproterozoic magmatisms in the Erguna massif, NE China: Evidence from zircon U-Pb geochronology (in Chinese). Geotectonica Metallogenia, 40: 559–573

    Google Scholar 

  • Zhao S, Xu W L, Wang W, Tang J, Zhang Y H. 2014. Geochronology and geochemistry of Middle-Late Ordovician granites and gabbros in the Erguna region, NE China: Implications for the tectonic evolution of the Erguna Massif. J Earth Sci, 25: 841–853

    Article  Google Scholar 

  • Zhao Z H. 2016. Geochemical Principle of Trace Element (in Chinese). 2nd ed. Beijing: Science Press. 534

    Google Scholar 

  • Zhao Z, Chi X G, Pan S Y, Liu J F, Sun W, Hu Z C. 2010. Zircon U-Pb LA-ICP-MS dating of Carboniferous volcanic and its geological significance in the Northwestern Lesser Xing’an Range (in Chinese). Acta Petrol Sin, 26: 2452–2464

    Google Scholar 

  • Zhao Z. 2011. Late Paleozoic magmatism and its tectonic significance in the northern Great Xing’an Range, Northeastern China. Doctoral Dissertation (in Chinese). Changchun: Jilin University

    Google Scholar 

  • Zhou C Y, Wu F Y, Ge W C, Sun D Y, Abbel R A A, Zhang J H, Cheng R Y. 2005. Age, geochemistry and petrogenesis of the cumulate gabbro in Tahe, northern Da Hinggan Mountain (in Chinese). Acta Petrol Sin, 21: 763–775

    Google Scholar 

Download references

Acknowledgements

Thanks to the reviewers’ comments and suggestions, it is very important to improve the quality of this paper. We also thank the staff of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China, and the Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, for their advice and assistance during U-Pb zircon dating, major and trace element analyses, and Hf isotope analysis. This work was supported by the MOST of China (Grant No. 2016YFC0600403) and the National Natural Science Foundation of China (Grant No. 41330206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Tang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Tang, J., Xu, W. et al. Crustal accretion and reworking processes of micro-continental massifs within orogenic belt: A case study of the Erguna Massif, NE China. Sci. China Earth Sci. 60, 1256–1267 (2017). https://doi.org/10.1007/s11430-016-9033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9033-5

Keywords

Navigation