Skip to main content
Log in

Minmax-concave total variation denoising

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Total variation (TV) denoising is a commonly used method for recovering 1-D signal or 2-D image from additive white Gaussian noise observation. In this paper, we define the Moreau enhanced function of \(L_1\) norm as \({\varPhi }_\alpha (x)\) and introduce the minmax-concave TV (MCTV) in the form of \({\varPhi }_\alpha (Dx)\), where D is the finite difference operator. We present that MCTV approaches \(\Vert Dx\Vert _0\) if the non-convexity parameter \(\alpha \) is chosen properly and apply it to denoising problem. MCTV can strongly induce the signal sparsity in gradient domain, and moreover, its form allows us to develop corresponding fast optimization algorithms. We also prove that although this regularization term is non-convex, the cost function can maintain convexity by specifying \(\alpha \) in a proper range. Experimental results demonstrate the effectiveness of MCTV for both 1-D signal and 2-D image denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009). https://doi.org/10.1137/080716542

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhattacharya, S., Venkatsh, K.S., Gupta, S.: Background estimation and motion saliency detection using total variation-based video decomposition. Signal Image Video Process. 11(1), 113–121 (2016). https://doi.org/10.1007/s11760-016-0909-2

    Article  Google Scholar 

  3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2010). https://doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  4. Bresson, X.: A short note for nonlocal tv minimization. Technical report (2009)

  5. Chartrand, R.: Shrinkage mappings and their induced penalty functions. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2014). https://doi.org/10.1109/icassp.2014.6853752

  6. Chen, L., Gu, Y.: The convergence guarantees of a non-convex approach for sparse recovery. IEEE Trans. Signal Process. 62(15), 3754–3767 (2014). https://doi.org/10.1109/tsp.2014.2330349

    Article  MathSciNet  Google Scholar 

  7. Combettes, P.L., Pesquet, J.C.: Proximal Splitting Methods in Signal Processing. Springer Optimization and Its Applications, pp. 185–212. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9569-8_10

    MATH  Google Scholar 

  8. Condat, L.: A direct algorithm for 1-d total variation denoising. IEEE Signal Process. Lett. 20(11), 1054–1057 (2013). https://doi.org/10.1109/lsp.2013.2278339

    Article  Google Scholar 

  9. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004). https://doi.org/10.1002/cpa.20042

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009). https://doi.org/10.1137/080725891

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, H., Chen, J., Wang, A., Chuang, C., Held, M., Pouliot, J.: Non-local total-variation (NLTV) minimization combined with reweighted L1-norm for compressed sensing CT reconstruction. Phys. Med. Biol. 61(18), 6878–6891 (2016). https://doi.org/10.1088/0031-9155/61/18/6878

    Article  Google Scholar 

  12. Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2010). https://doi.org/10.1002/mrm.22595

    Article  Google Scholar 

  13. Lanza, A., Morigi, S., Sgallari, F.: Convex Image Denoising via Non-convex Regularization. Lecture Notes in Computer Science, pp. 666–677. Springer, New York (2015). https://doi.org/10.1007/978-3-319-18461-6_53

    Google Scholar 

  14. Lanza, A., Morigi, S., Sgallari, F.: Convex image denoising via non-convex regularization with parameter selection. J. Math. Imaging Vis. 56(2), 195–220 (2016). https://doi.org/10.1007/s10851-016-0655-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Moreau, J.: Inf-convolution des fonctions numriques sur un espace vectoriel. Comptes Rendus de l’Acadmie des Sciences 256, 5047–5049 (1963)

    MATH  Google Scholar 

  16. Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Model. Simul. 4(3), 960–991 (2005). https://doi.org/10.1137/040619582

    Article  MathSciNet  MATH  Google Scholar 

  17. Nikolova, M.: Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Probl. Imaging 2(1), 133–149 (2008). https://doi.org/10.3934/ipi.2008.2.133

    Article  MathSciNet  MATH  Google Scholar 

  18. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1–4), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-f

    Article  MathSciNet  MATH  Google Scholar 

  19. Selesnick, I.: Sparse regularization via convex analysis. IEEE Trans. Signal Process. 65(17), 4481–4494 (2017). https://doi.org/10.1109/tsp.2017.2711501

  20. Selesnick, I.: Total variation denoising via the Moreau envelope. IEEE Signal Process. Lett. 24(2), 216–220 (2017). https://doi.org/10.1109/lsp.2017.2647948

    Article  MathSciNet  Google Scholar 

  21. Selesnick, I., Farshchian, M.: Sparse signal approximation via nonseparable regularization. IEEE Trans. Signal Process. 65(10), 2561–2575 (2017). https://doi.org/10.1109/tsp.2017.2669904

    Article  MathSciNet  Google Scholar 

  22. Selesnick, I., Parekh, A., Bayram, I.: Convex 1-d total variation denoising with non-convex regularization. IEEE Signal Process. Lett. 22(2), 141–144 (2015). https://doi.org/10.1109/lsp.2014.2349356

    Article  Google Scholar 

  23. Tofighi, M., Kose, K., Cetin, A.E.: Denoising images corrupted by impulsive noise using projections onto the epigraph set of the total variation function (PES-TV). Signal Image Video Process. 9(S1), 41–48 (2015). https://doi.org/10.1007/s11760-015-0827-8

    Article  Google Scholar 

  24. Xie, W.S., Yang, Y.F., Zhou, B.: An ADMM algorithm for second-order TV-based MR image reconstruction. Numer. Algorithms 67(4), 827–843 (2014). https://doi.org/10.1007/s11075-014-9826-z

    Article  MathSciNet  MATH  Google Scholar 

  25. Xu, J., Feng, X., Hao, Y., Han, Y.: Image decomposition using adaptive second-order total generalized variation. Signal Image Video Process. 8(1), 39–47 (2012). https://doi.org/10.1007/s11760-012-0420-3

    Article  Google Scholar 

  26. Yang, S., Wang, J., Fan, W., Zhang, X., Wonka, P., Ye, J.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2013). https://doi.org/10.1145/2487575.2487586

  27. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010). https://doi.org/10.1214/09-aos729

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010). https://doi.org/10.1137/090746379

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqian Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Liu, Y. Minmax-concave total variation denoising. SIViP 12, 1027–1034 (2018). https://doi.org/10.1007/s11760-018-1248-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1248-2

Keywords

Navigation