Skip to main content
Log in

Invasion of Lantana camara L. and its response to climate change in the mountains of Eastern Ghats

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Biological invasion is one of the most sensitive modern–day research problems which has grabbed a lot of attention of several plant and animal scientists globally. Our study has addressed the current extent of habitat suitability of Lantana camara L. and its possible future expansion using MaxEnt model in three climatic years 2050, 2070 and 2080 under two representative concentration pathways (RCP 4.5 and 8.5) in Koraput district of Odisha. A total of seven environmental variables out of total of 23 including 19 bioclimatic, 03 topographic and 01 land cover change variable were taken as the predictors due to their lesser Variance Inflation Factors (VIF) scores to avoid multicollinearity. Slope and Minimum temperature of coldest month (MTCM) contributed the most towards the MaxEnt modelling process. The overall results predict drastic range expansion of Lantana camara L. with the trends 6902.28 km2 < 6996.90 km2 < 7020.97 km2 for RCP 4.5 and from 7001.88 km2 < 7247.56 km2 < 7304.00 km2 for RCP 8.5 between the intervals current–2050, current–2070 and current–2080 respectively. RCP 8.5 scenario showed more expansion compared to the RCP 4.5 scenario. This study is first of its kind in Eastern Ghats of India and as Koraput forests are a part of community managed forests, the invasion of the species can be controlled by involving the local communities in the practices of canopy cover increase, regular uprooting of the weed, decreasing the practice of shifting cultivation and not leaving the croplands barren in the dry period of the year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data should be made available on authors’ permission.

Code availability

No custom codes were utilized in the research.

References

  • Adhikari D, Tiwary R, Barik SK (2015) Modelling hotspots for invasive alien plants in India. PLoS One 10:e0134665

    Article  PubMed  PubMed Central  Google Scholar 

  • Adhikary PP, Barman D, Madhu M et al (2019) Land use and land cover dynamics with special emphasis on shifting cultivation in eastern Ghats highlands of India using remote sensing data and GIS. Environ Monit Assess 191:315. https://doi.org/10.1007/s10661-019-7447-7

    Article  PubMed  Google Scholar 

  • Ahmad R, Khuroo AA, Hamid M, Charles B, Rashid I (2019) Predicting invasion potential and niche dynamics of Parthenium hysterophorus (congress grass) in India under projected climate change. Biodivers Conserv 28:2319–2344. https://doi.org/10.1007/s10531-019-01775-y

    Article  Google Scholar 

  • Alexander JM, Lembrechts JJ, Cavieres LA, Daehler C, Haider S, Kueffer C, Liu G, McDougall K et al (2016) Plant invasion into mountains and alpine ecosystems: current status and future challenges. Alp Bot 126:89–103

    Article  Google Scholar 

  • Araujo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539

    Article  PubMed  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x

    Article  Google Scholar 

  • Bellard C, Jeschke JM, Leroy B, Mace GM (2018) Insights from modelling studies on how climate change affects invasive alien species geography. Ecol Evol 8:5688–5700

    Article  PubMed  PubMed Central  Google Scholar 

  • Benito B, Lorite J, Penas J (2011) Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. Clim Chang 108:471–483

    Article  Google Scholar 

  • Berry ZC, Wevill K, Curran TJ (2011) The invasive weed Lantana camara increases fire risk in dry rainforest by altering fuel beds. Weed Res 51:525–533

    Article  Google Scholar 

  • Bhagwat SA, Breman E, Thekaekara T, Thornton TF, Willis KJ (2012) A battle lost? Report on two centuries of invasion and management of Lantana camara L. in Australia, India and South Africa. PLoS One 7:e32407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattarai KR, Inger E, Maren SCS (2014) Biodiversity and invasibility: distribution patterns of invasive plant species in the Himalayas, Nepal. J Mt Sci 11:688–696

    Article  Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. https://doi.org/10.1016/j.tree.2011.03.023

    Article  PubMed  Google Scholar 

  • Bradley BA (2013) Distribution models of invasive plants overestimate potential impact. Biol Invasions 15:1417–1429

    Article  Google Scholar 

  • Broughton S (2000) Review and evaluation of lantana biocontrol programs. Biol Control 17:272–286

    Article  Google Scholar 

  • Brown JL (2014) SDMToolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model. Methods Ecol Evol 5:694–700

    Article  Google Scholar 

  • Cassini MH (2011) Ranking threats using species distribution models in the IUCN red list assessment process. Biodivers Conserv 20:3689–3692

    Article  Google Scholar 

  • Champion SHG, Seth SK (1968) A revised survey of Forest types of India. Govt. of India Press, New Delhi, p 404

    Google Scholar 

  • Clements DR, Ditommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240

    Article  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Article  Google Scholar 

  • Duan RY, Kong XQ, Huang MY, Fan WY, Wang ZG (2014) The predictive performance and stability of six species distribution models. PLoS One 9:e112764

    Article  PubMed  PubMed Central  Google Scholar 

  • Elith JH, Graham C, Anderson R, Dudík M, Ferrier S, Guisan A et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob Ecol Biogeogr 16:24–33

    Article  Google Scholar 

  • Gallien L, Douzet R, Pratte S, Zimmermann NE, Thuiller W (2012) Invasive species distribution models - how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136. https://doi.org/10.1111/j.1466-8238.2012.00768.x

    Article  Google Scholar 

  • Goncalves E, Herrera I, Duarte M, Bustamante RO, Lampo M, Velasquez G, Sharma GP, Garcia-Rangel S (2014) Global invasion of Lantana camara: has the climatic niche been conserved across continents? PLoS One 9:e111468

    Article  PubMed  PubMed Central  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Hamid M, Khuroo AA, Charles B, Ahmad R, Singh CP, Aravind NA (2018) Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. Biodivers Conserv 28:2345–2370. https://doi.org/10.1007/s10531-018-1641-8

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:195–204

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, p 1535

    Google Scholar 

  • Kannan R, Shackleton CM, Shaanker RU (2013) Playing with the forest: invasive alien plants, policy and protected areas in India. Curr Sci 104:1159–1165

    Google Scholar 

  • Kennedy TA, Shahid N, Katherine MH et al (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638. https://doi.org/10.1038/nature00776

    Article  CAS  PubMed  Google Scholar 

  • Kulhanek SA, Leung B, Ricciardi A (2011) Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecol Appl 21:203–213

    Article  PubMed  Google Scholar 

  • Kumar S, LeBrun EG, Stohlgren TJ, Stabach JA, McDonald DL, Oi DH, LaPolla JS (2015) Evidence of niche shift and global invasion potential of the tawny crazy ant, Nylanderia fulva. Ecol Evol 5:4628–4641

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamsal P, Kumar L, Aryal A, Atreya K (2018) Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio 47:697–710. https://doi.org/10.1007/s13280-018-1017-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamsal P, Kumar L, Shabani F, Atreya K (2017) The greening of the Himalaya and Tibetan plateau under climate change. Glob Planet Change 159:77–92

    Article  Google Scholar 

  • Latombe G, Pyšek P, Jeschke JM, Blackburn TM, Bacher S, Capinha C, Costello MJ, Fernandez M, Gregory RD, Hobern D, Hui C, Jetz W, Kumschick S, McGrannachan C, Pergl J, Roy HE, Scalera R, Squires ZE, Wilson JRU, Winter M, Genovesi P, Geoch MA (2017) A vision for global monitoring of biological invasions. Biol Conserv 213:295–308. https://doi.org/10.1016/j.biocon.2016.06.013

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2014) Remote sensing and image interpretation, 7th edn. Wiley, New York, USA (ISBN 978-1-118-34328-9)

  • Mainka SA, Howard GW (2010) Climate change and invasive species: double jeopardy. Integr Zool 5:102–111

    Article  PubMed  Google Scholar 

  • Marini L, Battisti A, Bona E, Federici G, Martini F, Pautasso M, Hulme PE (2012) Alien and native plant life-forms respond differently to human and climate pressures. Glob Ecol Biogeogr 21:534–544

    Article  Google Scholar 

  • Mungi NA, Coops NC, Ramesh K, Rawat GS (2018) How global climate change and regional disturbance can expand the invasion risk? Case study of Lantana camara invasion in the Himalay. Biol Invasions 20:1849–1863. https://doi.org/10.1007/s10530-018-1666-7

    Article  Google Scholar 

  • O'Donnell MS, Ignizio DA (2012) Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series 691:p10

    Google Scholar 

  • Oke OA, Thomson KA (2015) Distribution models for mountain plant species: the value of elevation. Ecol Model 301:72–77

    Article  Google Scholar 

  • Panda RM, Behera MD, Roy PS (2017) Assessing distributions of two invasive species of contrasting habits in future climate. J Environ Manag 213:478–488. https://doi.org/10.1016/j.jenvman.2017.12.053

    Article  Google Scholar 

  • Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19. https://doi.org/10.1023/a:1010034312781

    Article  Google Scholar 

  • Paul TK (2010) The earliest record of Parthenium hysterophorus L. (Asteraceae) in India. Curr Sci 98:1272

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pecl GT, Araújo MB, Bell JD et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:9214

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG et al (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton

    Book  Google Scholar 

  • Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pontius RG (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66(8):1011–1016

    Google Scholar 

  • Qin Z, Zhang JE, Di Tommaso A, Wang RL, Liang KM (2016) Predicting the potential distribution of Lantana camara under RCP scenarios using ISI-MIP models. Clim Chang 134:193–208

    Article  Google Scholar 

  • Reddy CS (2008) Catalogue of invasive alien flora of India. Life Sci J 5:84–89

    Google Scholar 

  • Richardson DM, Rejmanek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Roy PS, Dutt CBS, Joshi PK (2002) Tropical forest assessment and management. Trop Ecol 43:21–38

    Google Scholar 

  • Sahu PK, Singh JS (2008) Structural attributes of lantana-invaded forest plots in Achanakmar-Amarkantak biosphere reserve, Central India. Curr Sci India 94:494–500

    Google Scholar 

  • Sahu SS, Gunasekaran K, Vanamail P, Jambulingam P (2013) Persistent foci of falciparum malaria among tribes over two decades in Koraput district of Odisha state, India. Malar J 12:1–8. https://doi.org/10.1186/1475-2875-12-72

    Article  Google Scholar 

  • Sekaar KC (2012) Invasive alien plants of Indian Himalayan region. Diversity and implication. Am J Plant Sci 3:177–184. https://doi.org/10.4236/ajps.2012.3202

    Article  Google Scholar 

  • Sharma GP, Raghubanshi AS, Singh JS (2005) Lantana invasion: an overview. Weed Biol Manag 5:157–165

    Article  Google Scholar 

  • Shrestha UB, Sharma KP, Devkota A, Siwakoti M, Shrestha BB (2018) Potential impact of climate change on the distribution of six invasive alien plants in Nepal. Ecol Indic 95:99–107

    Article  Google Scholar 

  • Singh HP, Batish DR, Dogra KS, Kaur S, Kohli RK, Negi A (2014) Negative effect of litter of invasive weed Lantana camara on structure and composition of vegetation in the lower Siwalik Hills, northern India. Environ Monit Assess 186:3379–3389

    Article  PubMed  Google Scholar 

  • Starfinger U, Kowarik I, Rode M, Schepker H (2003) From desirable ornamental plant to pest to accepted addition to the flora? The perception of alien tree species through the centuries. Biol Invasions 5:323–335

    Article  Google Scholar 

  • Sundaram B, Hiremath AJ (2012) Lantana camara invasion in a heterogeneous landscape: patterns of spread and correlation with changes in native vegetation. Biol Invasions 14:1127–1141

    Article  Google Scholar 

  • Swarbrick JT, Willson BW, Hannan-Jones M (1995) Lantana camara L. Plant Prot Q 10:82–95

    Google Scholar 

  • Taylor S, Kumar L, Reid N, Kriticos DJ (2012) Climate change and the potential distribution of an invasive shrub, Lantana camara L. PLoS One 7:e35565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thuiller W, Richardson DM, PyŠEk P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:234–250

    Article  Google Scholar 

  • van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N (2016) Minimum required number of specimen records to develop accurate species distribution models. Ecography (Cop) 39:542–552. https://doi.org/10.1111/ecog.01509

    Article  Google Scholar 

  • West AM, Kumar S, Brown CS, Stohlgren TJ, Bromberg J (2016) Field validation of an invasive species Maxent model. Ecol Inform 36:126–134

    Article  Google Scholar 

  • Willis KJ, Whittaker RJ (2002) Species diversity–scale matters. Science 295:1245–1248

    Article  CAS  PubMed  Google Scholar 

  • Wrzesien M, Denisow B (2017) Factors responsible for the distribution of invasive plant species in the surroundings of railway areas. A case study from SE Poland Biolog 72:1275–1284. https://doi.org/10.1515/biolog-2017-0146

    Article  Google Scholar 

  • Yee TW, Mitchell ND (1991) Generalized additive models in plant ecology. J Veg Sci 2:587–602

    Article  Google Scholar 

  • Zalucki MP, Day MD, Playford J (2007) Will biological control of Lantana camara ever succeed? Patterns, processes & prospects. Biol Control 42:251–261

    Article  Google Scholar 

Download references

Acknowledgments

The authors duly acknowledge the constant support of Forest Department for providing appropriate permissions in the field. The first author is grateful to DST–INSPIRE for providing fellowship (Sanction No. DST/INSPIRE Fellowship/2015/IF150127 dated 10.04.2015) for undertaking the research.

Funding

The research was funded by DST, Govt. of India under DST-INSPIRE scheme (Sanction No. DST/INSPIRE Fellowship/2015/IF150127 dated 10.04.2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakoli Banerjee.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, R., Subudhi, D.K., Sahoo, C.K. et al. Invasion of Lantana camara L. and its response to climate change in the mountains of Eastern Ghats. Biologia 76, 1391–1408 (2021). https://doi.org/10.1007/s11756-021-00735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11756-021-00735-8

Keywords

Navigation