Skip to main content
Log in

Role of Promoters on the Acrolein Ammoxidation Performances of BiMoO x

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Ammoxidation of acrolein to acrylonitrile was studied using multicomponent (MC) BiMoOx catalysts in the presence of ammonia and oxygen. The MC catalysts containing bivalent and trivalent metal promoters were found to be highly active and selective to acrylonitrile. The corresponding MC catalysts were characterized by X-ray diffraction, nitrogen physisorption, X-ray photoelectron spectroscopy, ICP-MS and UV–visible diffuse reflectance spectroscopy. It was observed that, among the bivalent cations, the catalysts containing both Co–Ni showed superior performances due to the presence of the metastable β-Co x Ni1−x MoO4 phase. The presence of a trivalent cation, and especially of iron, promoted the formation of both the γ-Bi2MoO6 active phase and the active β-phase of bivalent metal molybdate. Further, optimization of the reaction conditions enabled the achievement of a 59 % acrylonitrile yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. https://www.agra-net.net/agra/world-ethanol-and-biofuels-report/biofuel-news/biodiesel/european-union—council-approves-7-cap-for-crop-based-biofuels-442927.htm

  2. OECD-FAO Agricultural Outlook 2011–2020. http://www.agri-outlook.org

  3. Katryniok B, Paul S, Dumeignil F (2013) Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catal 3(8):1819–1834

    Article  CAS  Google Scholar 

  4. Guerrero-Perez MO, Banares MA (2008) New reaction: conversion of glycerol into acrylonitrile. ChemSusChem 1(6):511–513

    Article  CAS  Google Scholar 

  5. Liebig C, Paul S, Katryniok B, Guillon C, Couturier J-L, Dubois J-L, Dumeignil F, Hoelderich WF (2013) Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe, V)-O. Appl Catal B 132–133:170–182

    Article  Google Scholar 

  6. Bradzil JF (2000) Acrylonitrile. Kirk-Othmer encyclopedia of chemical technology. Wiley, New York. doi:10.1002/0471238961.0103182502180126.a01.pub3

    Google Scholar 

  7. Knox W, Taylor K, Tullman G (1974) Ammoxidation of saturated hydrocarbons. US-patent US3833638A

  8. Dubois J-L (2008) Method for the synthesis of acrylonitrile from glycerol. US-patent US20100048850A1

  9. Liebig C, Paul S, Katryniok B, Guillon C, Couturier J-L, Dubois J-L, Dumeignil F, Hoelderich WF (2014) Reply to the Letter to the Editor concerning the comments of M.A. Banares and M.O. Guerrero-Pérez to the article “Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe, V)-O”. Appl Catal B 148–149:604–605

    Article  Google Scholar 

  10. Bañares MA, Guerrero-Pérez MO (2014) Comments on “Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb–(Fe, V)–O”. Appl Catal B 148–149:601–603

    Article  Google Scholar 

  11. Vanderborght H (1963) Procédé de préparation de nitriles non saturés. Belgium Patent BE 628287

  12. Oka H, Miyake K, Haranoa Y, Imoto T (1975) J Appl Chem Biotechnol 25:663–670

    Article  CAS  Google Scholar 

  13. Grasselli RK (1999) Advances and future trends in selective oxidation and ammoxidation catalysis. Catal Today 49(1–3):141–153

    Article  CAS  Google Scholar 

  14. Kung HH, Kung MC (1985) Selective oxidative dehydrogenation of butenes on ferrite catalysts. Adv Catal 33:159–198

    CAS  Google Scholar 

  15. Moro-Oka Y, Ueda W (1994) Multicomponent bismuth molybdate catalyst: a highly functionalized catalyst system for the selective oxidation of olefin. Adv Catal 40:233–273

    CAS  Google Scholar 

  16. Gunter S, Joachim K, Kurt S, Rolf S, Wilhelm V (1965) Process for preparing unsaturated nitriles. US-patent US3226422

  17. Takenaka S, Yamaguchi G (1969) Process for the oxidation of olefins to aldehydes and acids. US-patent US3454630A

  18. Idol JJ (1973) Process for the manufacture of acrylonitrile and methacrylonitrile. US-patent US2904580 A

  19. Kolchin I, Galperin E, Bobkov S, Margolis LY (1964) Oxidation of propylene on a bismuth-molybdenum catalyst. Neftekhimiya 4:301

    CAS  Google Scholar 

  20. German K, Grzybowka B, Haber J (1973) Active centers for oxidation of propylene on Bi-Mo-O catalysts. Bull Acad Pol Sci Ser Sci Chim 21:319

    CAS  Google Scholar 

  21. Monnier JR, Keulks GW (1979) Am Chem Soc Div Pet Chem 24:19

    CAS  Google Scholar 

  22. Burrington JD, Grasselli RK (1979) Aspects of selective oxidation and ammoxidation mechanisms over bismuth molybdate catalysts. J Catal 59(1):79–99

    Article  CAS  Google Scholar 

  23. Carson D, Coudurier G, Forissier M, Vedrine JC, Laarif A, Theobald F (1983) Synergy effects in the catalytic properties of bismuth molybdates. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 79(8):1921–1929

    CAS  Google Scholar 

  24. Maione A, Devillers M (2004) Solid solutions of Ni and Co molybdates in silica-dispersed and bulk catalysts prepared by sol–gel and citrate methods. J Solid State Chem 177(7):2339–2349

    Article  CAS  Google Scholar 

  25. Ono T, Ogata N, Miyaryo Y (1996) Characteristic features of Raman band shifts of scheelite-type molybdate catalysts exchanged with the 18O tracer via redox reactions. J Catal 161(1):78–86

    Article  CAS  Google Scholar 

  26. Maldonado-Hódar FJ, Palma Madeira LM, Farinha Portela M (1996) The effects of coke deposition on NiMoO4 used in the oxidative dehydrogenation of butane. J Catal 164(2):399–410

    Article  Google Scholar 

  27. Mazzocchia C, Aboumrad C, Diagne C, Tempesti E, Herrmann J, Thomas G (1991) On the NiMoO4 oxidative dehydrogenation of propane to propene: some physical correlations with the catalytic activity. Catal Lett 10(3–4):181–191

    Article  CAS  Google Scholar 

  28. Batist PA, van de Moesdijk CGM, Matsuura I, Schuit GCA (1971) The catalytic oxidation of 1-butene over bismuth molybdates: promoters for the Bi2O3·3MoO3 catalyst. J Catal 20(1):40–57

    Article  CAS  Google Scholar 

  29. Harrison WTA (1995) Crystal structures of paraelastic aluminum molybdate and ferric molybdate, β-Al2(MoO4)3 and β-Fe2(MoO4)3. Mater Res Bull 30(11):1325–1331

    Article  CAS  Google Scholar 

  30. Battle PD, Cheetham AK, Harrison WTA, Pollard NJ, Faber J Jr (1985) The structure and magnetic properties of chromium(III) molybdate. J Solid State Chem 58(2):221–225

    Article  CAS  Google Scholar 

  31. Carrazan S, Martin C, Rives V, Vidal R (1996) An FT-IR spectroscopy study of the adsorption and oxidation of propene on multiphase Bi, Mo and Co catalysts. Spectrochim Acta Part A Mol Biomol Spectrosc 52(9):1107–1118

    Article  Google Scholar 

  32. Wolfs MWJ, Batist PHA (1974) The selective oxidation of 1-butene over a multicomponent molybdate catalyst. Influences of various elements on structure and activity. J Catal 32(1):25–36

    Article  CAS  Google Scholar 

  33. Giordano N, Padovan M, Vaghi A, Bart JCJ, Castellan A (1975) Structure and catalytic activity of MoO3·Al2O3 systems: III. Nature of sites for propylene disproportionation. J Catal 38(1–3):1–10

    Article  CAS  Google Scholar 

  34. Smith G, Ibers J (1965) The crystal structure of cobalt molybdate CoMoO4. Acta Crystallogr A 19(2):269–275

    Article  CAS  Google Scholar 

  35. Zhou C-J, Huang C-J, Zhang W-G, Zhai H-S, Wu H-L, Chao Z-S (2007) Synthesis of micro- and mesoporous ZSM-5 composites and their catalytic application in glycerol dehydration to acrolein. Stud Surf Sci Catal 165:527–530

    Article  CAS  Google Scholar 

  36. Zhang YJ, Rodrı́guez-Ramos I, Guerrero-Ruiz A (2000) Oxidative dehydrogenation of isobutane over magnesium molybdate catalysts. Catal Today 61(1–4):377–382

    Article  CAS  Google Scholar 

  37. Matsuura I, Wolfs MWJ (1975) X-ray photoelectron spectroscopy study of some bismuth molybdates and multicomponent molybdates. J Catal 37(1):174–178

    Article  CAS  Google Scholar 

  38. Uchida K, Ayame A (1996) Dynamic XPS measurements on bismuth molybdate surfaces. Surf Sci 357–358:170–175

    Article  Google Scholar 

  39. Armour AW, Mitchell PCH, Folkesson B, Larsson R (1974) X-ray photoelectron (ESCA) spectra of some molybdenum-containing catalysts. J Less Common Metals 36(1–2):361–365

    Article  CAS  Google Scholar 

  40. Kaddouri A, Tempesti E, Mazzocchia C (2004) Comparative study of β-nickel molybdate phase obtained by conventional precipitation and the sol–gel method. Mater Res Bull 39(4–5):695–706

    Article  CAS  Google Scholar 

  41. Soares APV, Portela MF, Kiennemann A, Hilaire L (2003) Mechanism of deactivation of iron-molybdate catalysts prepared by coprecipitation and sol–gel techniques in methanol to formaldehyde oxidation. Chem Eng Sci 58(7):1315–1322

    Article  Google Scholar 

  42. Coulter KE, Sault AG (1995) Effects of activation on the surface properties of silica-supported cobalt catalysts. J Catal 154(1):56–64

    Article  CAS  Google Scholar 

  43. Rao TSRP, Menon PG (1978) Physicochemical studies on silica-supported multicomponent molybdate catalyst before and after use in ammoxidation of propylene. J Catal 51(1):64–71

    Article  CAS  Google Scholar 

  44. Grasselli RK, Burrington JD (1981) Selective oxidation and ammoxidation of propylene by heterogeneous catalysis. Adv Catal 30:133–163

    CAS  Google Scholar 

  45. Jung JC, Lee H, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Effect of oxygen capacity and oxygen mobility of pure bismuth molybdate and multicomponent bismuth molybdate on their catalytic performance in the oxidative dehydrogenation of n-butene to 1, 3-butadiene. Catal Lett 124(3–4):262–267

    Article  CAS  Google Scholar 

  46. Zakharov II, Popova GY, Andrushkevich TV (1982) Effect of molybdenum ion coordination on acrolein adsorption on α- and β-cobalt molybdate. React Kinet Catal Lett 19(3–4):367–371

    Article  CAS  Google Scholar 

  47. Haber J, Witko M (1981) Quantum-chemistry and catalysis in oxidation of hydrocarbons. Acc Chem Res 14(1):1–7

    Article  CAS  Google Scholar 

  48. Wood B (1962) Production of unsaturated aliphatic nitriles. US-patent US3094552 A

Download references

Acknowledgments

The Fonds Européen de Développement Régional (FEDER), CNRS, Région Nord Pas-de-Calais and Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche are acknowledged for fundings of XPS/LEIS/ToF–SIMS spectrometers within the Pôle Régional d’Analyses de Surface. Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur et de la Recherche, Région Nord – Pas de Calais and FEDER are acknowledged for supporting and funding partially this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Dumeignil.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalwadkar, A., Katryniok, B., Paul, S. et al. Role of Promoters on the Acrolein Ammoxidation Performances of BiMoO x . J Am Oil Chem Soc 93, 431–443 (2016). https://doi.org/10.1007/s11746-015-2785-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-015-2785-2

Keywords

Navigation