Skip to main content
Log in

Synthesis and Characterization of a Novel Series of Amphiphilic Mercapto-1,2,4-Triazole Schiff Base Ligands: Investigation of their Behavior in Hydro-Organic Solutions

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

A novel series of four Schiff base amphiphiles derived from 3-mercapto-1,2,4-triazole and different alkyl chains were successfully prepared by a new synthetic three-step method. The chemical structures of the different ligands were characterized by elemental analysis, FT-IR spectroscopy, 1H-NMR and 13C-NMR spectra. The effect of the chain length on the solution behavior of the amphiphilic ligands were studied, in both homogeneous and heterogeneous systems, using pH-metric and spectrophotometric methods. Based on the electronic spectroscopy data, some parameters governing their surfactant properties, such as the critical micelle concentration (CMC), the micellization free energy (ΔG mic) and the hydrophilic-lipophilic balance (HLB) were evaluated in chloroform and discussed. The behavior of the four Schiff bases in the heterogeneous chloroform-water mixture was then explored through the establishment of their acidity (pKA) and distribution (Log K d) constants in 1 M chloride medium and the acidity constants in aqueous medium (pKa) were deduced. Results showed that an increase of the alkyl chain decreases the distribution of the ligands and increases their acidity. The extractive performance of the Schiff base amphiphiles were investigated towards Ni(II) from a chloride medium at 30 °C. The analysis of extraction data revealed that the synthesized Schiff bases exhibit a better and faster extractability than many ligands reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Basavapatna N, Kumar P, Kikkeri NM, Mallesha L (2013) Synthesis and antiproliferative activity of some new fluorinated Schiff bases derived from 1,2,4-triazoles. J Fluorine Chem 156:15–20

    Article  Google Scholar 

  2. Shaker NO, Abd El-Salam FH, El-Sadek BM, Kandeel EM, Baker SA (2011) Anionic schiff base amphiphiles: synthesis, surface, biocidal and antitumor activities. J Am Sci 7:427–436

    Google Scholar 

  3. Hu G, Wang G, Duan N, Wen X, Caoa T, Xie S, Huangb W (2011) Design, synthesis and antitumor activities of fluoroquinolone C-3 heterocycles (IV): s-triazole Schiff-Mannich bases derived from ofloxacin. Acta Pharm Sinic B 11:312–317

    Google Scholar 

  4. Wang M, Hu Q, Liang D, Li Y, Li S, Zhang X, Xi M, Yang X (2013) Intercalation of Ga3+ salicylidene-amino acid Schiff base complexes into layered double hydroxides: synthesis, characterization, acid resistant property, in vitro release kinetics and antimicrobial activity. Appl Clay Sci 83:182–190

    Article  Google Scholar 

  5. West D, Liberta E, Padhye SB (1993) Thiosemicarbazone complexes of copper(I1): structural and biological studies. Coord Chem Rev 123:49–71

    Article  CAS  Google Scholar 

  6. Yurt A, Duran B, Dal H (2014) An experimental and theoretical investigation on adsorption properties of some diphenolic Schiff bases as corrosion inhibitors at acidic solution/mild steel Interface. Arab J Chem 7:732–740

    Article  CAS  Google Scholar 

  7. Hadj Youcef M, Benabdallah T, Ilikti H (2006) Study of copper(II) extraction from sulphate medium by cloud point extraction with N-salicylidene aniline ligand in presence of non-ionic surfactant. Can J Anal Sci Spect 51:267–278

    Google Scholar 

  8. Benabdallah T, Al-Taiar AH, Reffas H (2004) Spectrophotometric studies of the behavior of multidentate Schiff base ligands with copper (II) in methanol solution. S Afr J Chem 57:28–33

    Google Scholar 

  9. Kulaksızoglu S, Gup R (2012) A new bis(azine) tetradentate ligand and its transition metal complexes: synthesis, characterisation, and extraction properties. Chem Papers 66:194–201

    Google Scholar 

  10. Schiff H (1864) Mitteilungen aus dem Universitätslaboratorium in Pisa: eine neue Reihe organischer Basen. (in German). Justus Liebigs. Ann Chem 131:118–119

    Article  Google Scholar 

  11. Bhaumik PK, Harms K, Chattopadhyay S (2013) Counter anion modulated variation of denticity of NNO donor Schiff base in copper(II) complexes: isolation of a zwitterionic Schiff base as the metal complex. Polyhedron 62:179–187

    Article  CAS  Google Scholar 

  12. Abdallah SM, Mohamed GG, Zayed MA, Abou-El-Ela MSA (2009) Spectroscopic study of molecular structures of novel Schiff base derived from o-phthaldehyde and 2-aminophenol and its coordination compounds together with their biological activity. Spectrochim Acta Part A 73:833–840

    Article  Google Scholar 

  13. Hemmateenejad B, Emami L, Sharghi H (2010) Multi-wavelength spectrophotometric determination of acidity constant of some newly synthesized Schiff bases and their QSPR study. Spectrochim Acta Part A 75:340–346

    Article  Google Scholar 

  14. Hadjeb R, Bara A, Barkat D (2013) Determination of acid dissociation constants of some hydroxy schiff bases by pH-metric titration. Application of the Hammett equation. MATEC Web of Conferences 3. 01047:1–4

  15. Koseoglu F, Kilic E, Uysal D (1995) Protonation constants of some substituted 2-hydroxy-1-naphthalideneanilines in dioxan-water mixtures. Talanta 42:1875–1882

    Article  CAS  Google Scholar 

  16. Narasimham L, Barhate VD (2011) Physico-chemical characterization of some betablockers and anti-diabetic drugs-potentiometric and spectrophotometric pKa determination in different co-solvents. Eur J Chem 2:36–46

    Article  CAS  Google Scholar 

  17. Kamyabi MA (2009) Potentiometric determination of acidity constants of some Schiff bases in tetrahydrofuran-water mixtures. J Anal Chem 64:1131–1135

    Article  CAS  Google Scholar 

  18. Sherif OE, Issa YM, Abbas SM (2000) Thermodynamic parameters of some Schiff bases derived from 5,7-dihydroxy-6-formyl-2-methylbenzopyran-4-one. J Therm Anal Calor 59:913–926

    Article  CAS  Google Scholar 

  19. Ibrahim ES, Sallam SA, Orabi AS, El-Shetary BA, Lentz A (1998) Schiff bases of acetone derivatives: spectroscopic properties and physical constants. Monatsh Chem 129:159–171

    CAS  Google Scholar 

  20. Migahed MA, Farag AA, Elsaed SM, Kamal R, Mostfa M, Abd El-Bary H (2011) Synthesis of a new family of Schiff base nonionic surfactants and evaluation of their corrosion inhibition effect on X-65 type tubing steel in deep oil wells formation water. Mat Chem Phys 125:125–135

    Article  CAS  Google Scholar 

  21. Negm NA, Zaki MF (2008) Corrosion inhibition efficiency of nonionic Schiff base amphiphiles of p-aminobenzoic acid for aluminum in 4 N HCl. Colloids and Surfaces A: physicochem. Eng Aspects 322:97–102

    Article  CAS  Google Scholar 

  22. Aiad I, El-Sukkary MM, El-Deeb A, El-Awady MY, Shaban SM (2012) Surface properties, thermodynamic aspects and antimicrobial activity of some novel iminium surfactants. J Surfact Deterg 15:359–366

    Article  CAS  Google Scholar 

  23. Baglioni P, Berti D, Bonini M, Carretti E, Dei L, Fratini E, Giorgi R (2014) Micelle, microemulsions, and gels for the conservation of cultural heritage. Adv Colloid Inter Sci 205:361–371

    Article  CAS  Google Scholar 

  24. Jiao T, Li X, Zhang Q, Duan P, Zhang L, Liu M, Luo X, Li Q, Gao F (2012) Interfacial assembly of a series of trigonal Schiff base amphiphiles in organized molecular films. Colloids and surfaces A: Physicochem. Eng Aspects 407:108–115

    Article  CAS  Google Scholar 

  25. Karakus OO, Deligoz H (2012) Synthesis and characterization of three novel azocalix[4]arene Schiff base derivatives and their selective copper extraction, Haut du formulaire Bas du formulaire. J Iran Chem Soc 9:93–100

    Article  CAS  Google Scholar 

  26. Ha ST, Ong LK, Win YF, Sivasothy Y, Yeap GY, Boey PL (2010) The synthesis and characterization of new schiff bases: 4-[(Pyridin-4-ylmethylene)amino]phenylalkanoates. Aust J Basic Appl Sci 4:1146–1151

    CAS  Google Scholar 

  27. Hemakanthi G, Dhathathreyan A (2002) Fusion of vesicles in manganese complex of a single-chain Schiff base amphiphile—3-cyano-N-benzylidene hexadecylamine. J Colloid Inter Sci 253:393–396

    Article  CAS  Google Scholar 

  28. Luo X, Wang X, Wu S, Liang Y (2003) Strong blue-fluorescence-emitted stable monolayers formed in organic solvents by a coordination polymer with long-chained bis-Schiff base. J Colloid Inter Sci 258:432–434

    Article  CAS  Google Scholar 

  29. Jiao T, Wang Y, Guo W, Zhang Q, Yan X, Chen J, Wang L, Xie D, Gao F (2012) Synthesis and photocatalytic property of gold nanoparticles by using a series of bolaform Schiff base amphiphiles. Mater Res Bull 47:4203–4209

    Article  CAS  Google Scholar 

  30. Hadj Youcef M, Benabdallah T, Reffas H (2014) Synergic effect of sodium dodecyl sulfate micelles on Copper(II) extraction from saline sulfate medium with some ortho-hydroxy Schiff base chelating extractants. Tenside Surf Deterg 51:166–174

    Article  Google Scholar 

  31. Boukraa Y, Benabdallah T (2011) Liquid–liquid extraction of copper(II) with substituted salicylideneanilines from sulfate media. J Coord Chem 64:832–841

    Article  CAS  Google Scholar 

  32. Hadj Youcef M, Benabdallah T, Ilikti H, Reffas H (2008) Equilibrium studies on the synergic liquid-liquid extraction process of copper(II) from sulphate media with mixtures of some bidentate mono-Schiff bases and acyclic polyether non-ionic surfactant in chloroform. Solvent Extr Ion Exch 26:534–555

    Article  CAS  Google Scholar 

  33. Gupta AK, Prachand S, Patel A, Jain S (2012) Synthesis of some 4-Amino-5-(substituted-phenyl)-4H-[1, 2, 4] triazole-3-thiol derivatives and Antifungal activity. Int J Pharm Life Sci (IJPLS) 3:1848–1857

    CAS  Google Scholar 

  34. Mali RK, Somani RR, Toraskar MP, Mali KK, Naik PP, Shirodkar PY (2009) Synthesis of some antifungal and anti-tubercular 1, 2, 4-triazole analogues. Int J Chem Tech Res 1:168–173

    CAS  Google Scholar 

  35. Ni XL, Zeng X, Redshaw C, Yamato T (2011) Synthesis and evaluation of a novel pyrenyl-appended triazole-based thiacalix[4]arene as a fluorescent sensor for Ag+ ion. Tetrahedron 67:3248–3253

    Article  CAS  Google Scholar 

  36. Yang Z, Sheng-Gang Y, Yan-Ping L, Ying T, Ge-Fei H, Qiong-You W, Zhen X, Guang-Fu Y (2013) Design and synthesis of 1-(benzothiazol-5-yl)-1H-1,2,4-triazol-5-ones as protoporphyrinogen oxidase inhibitors. Bioorg Med Chem 21:3245–3255

    Article  CAS  Google Scholar 

  37. Lechani N, Hamdi M, Aklil F, Khabouche S, Baitich OB, Kheffache D, Moussi S, Ouamerali O (2013) Complexation of manganese(II), cobalt(II), nickel(II) and copper(II) by a ligand derived from 1,2,4-triazole: potentiometric studies and density functional theory calculations. Eur J Chem 4:285–291

    Article  CAS  Google Scholar 

  38. Fanni S, Keyes TE, O’Connor CM, Hughes H, Wang R, Vos JG (2000) Excited-state properties of ruthenium(II) olypyridyl complexes containing asymmetric triazole ligands. Coord Chem Rev 208:77–86

    Article  CAS  Google Scholar 

  39. Bagihalli GB, Patil SA, Badami PS (2009) Synthesis, physicochemical investigation and biological studies of zinc(II) complexes with 1,2,4-triazole schiff bases. J Iran Chem Soc 6:259–270

    Article  CAS  Google Scholar 

  40. Finger GC, Dickerson DR, Starr LD, Orlopp DE (1965) Aromatic fluorine compounds. XIII. Substituted N-phenylglycine ethyl esters and hydrazides. J Med Chem 8:405–407

    Article  CAS  Google Scholar 

  41. El Ashry ESH, Kassem AA, Abdel-Hamid H, Louis FF, Khattab ShAN, Aouad MR (2006) Synthesis of 4-amino-5-(3-chlorobenzo[b]thien-2-yl)-3-mercapto-1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles and triazolo[3,4, b][1,3,4]thiadiazines under classical and microwave conditions. Arkivoc 9:119–132

    Google Scholar 

  42. Collin X, Sauleau A, Coulonb J (2003) 1,2,4-Triazolo mercapto and aminonitriles as potent antifungal agents. Bioorg Med Chem Lett 13:2601–2605

    Article  CAS  Google Scholar 

  43. Anand U, Jash C, Mukherjee S (2011) Spectroscopic determination of Critical Micelle Concentration in aqueous and non-aqueous media using a non-invasive method. J Colloid Inter Sci 364:400–406

    Article  CAS  Google Scholar 

  44. Absalan G, Alipour Y (2013) A novel methodology for analysis of enantiomers through determination of their critical micelle concentrations using spectrophotometric method. J Pharma Biomed Anal 83:96–100

    Article  CAS  Google Scholar 

  45. Mondal S, Ghosh S (2012) Role of curcumin on the determination of the critical micellar concentration by absorbance, fluorescence and fluorescence anisotropy techniques. J Photochem Photobiol 115:9–15

    Article  CAS  Google Scholar 

  46. Beyaz A, Oh WS, Reddy VP (2004) Synthesis and CMC studies of 1-methyl-3-(pentafluorophenyl)imidazolium quaternary salts. Colloid Surf B 36:71–74

    Article  CAS  Google Scholar 

  47. Mondal S, Ghosh S (2012) Role of curcumin on the determination of the critical micellar concentration by absorbance, fluorescence and fluorescence anisotropy techniques. J Photochem Photobiol 9:9–15

    Article  Google Scholar 

  48. Griffin WC (1949) Classification of surface-active agents by “HLB”. J Soc Cosmet Chem 1:311–326

    Google Scholar 

  49. Griffin WC (1954) Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem 5:249–259

    Google Scholar 

  50. Negm NA, El-Farargy AF, Tawfik SM, Abdelnour AM, Hefni HH, Khowdiary MM (2013) Synthesis, surface and thermodynamic properties of substituted polytriethanolamine nonionic surfactants. J Surfact Deterg 16:333–342

    Article  CAS  Google Scholar 

  51. Negm NA, Zaki MF (2008) Structural and biological behaviors of some nonionic Schiff-base amphiphiles and their Cu(II) and Fe(III) metal complexes. Colloid Surf B 64:179–183

    Article  CAS  Google Scholar 

  52. Zheng Z, Obbard JP (2002) Evaluation of an elevated non-ionic surfactant critical micelle concentration in a soil/aqueous system. Water Res 36:2667–2672

    Article  CAS  Google Scholar 

  53. Zhang Y, Xu Y, Qiu S, Yang L (2013) Synthesis and properties of mono or double long-chain alkanolamine surfactants. J Surfact Deterg 16:841–848

    Article  CAS  Google Scholar 

  54. Markus Y, Kertes AS (1969) Ion exchange and solvent extraction of metal complexes. Wiley Int, New York, pp 95–104, 427-492

  55. Arichi J, Goetz-Grandmont G, Brunette JP (2006) solvent extraction of europium(III) from nitrate medium with 4-acyl-isoxazol-5-ones and 4-acyl-5-hydroxy-pyrazoles. Effect of salts and diluents. Hydrometallurgy 82:100–109

    Article  CAS  Google Scholar 

  56. Gran G (1950) Determination of the equivalent point in potentiometric titrations. Acta Chem Scand 41:559–577

    Article  Google Scholar 

  57. Gran G (1952) Determination of the equivalence point in potentiometric titrations. Part II Analyst 77:661–671

    CAS  Google Scholar 

  58. Diantouba B (1988) Dissertation Thesis. P 38. Louis Pasteur University, Strasbourg

  59. Torkestani K, Blinova O, Arichi J, Goetz-Grandmont GJ, Brunette JP (1996) Synergistic extraction of oxide in toluene. Solvent Extr Ion Exch 14:1037–1056

    Article  CAS  Google Scholar 

  60. Messaoudi A, Torkestani K, Goetz-Grandmont GJ, Brunette JP (1996) Synergic extraction of alkaline earth cations with 3-phenyl-4-benzoyl-isoxazol-5-one and tri-n-octylphosphine oxide in toluene. J Radioanal Nucl Chem Art 208:123–132

    Article  CAS  Google Scholar 

  61. Torkestani K, Goetz-Grandmont GJ, Brunette JP (1997) Synergistic extraction of cadmium and zinc from nitrate medium with 3-phenyl-4-benzoylisoxazol-5-one in the presence of methyl-tri-n-octylammonium nitrate in chloroform and toluene. Solvent Extr Ion Exch 15:819–835

    Article  CAS  Google Scholar 

  62. Ishii H, Satou S, Odashima T (1993) Solvent extraction of Aluminium, Gallium and Indium with 4-acyl-3-phenyl-5-isoxazolones. Solvent Extr Ion Exch 11:423–436

    Article  Google Scholar 

  63. Wang T, Nagaosa Y (2001) Solvent extraction equilibrium of Copper(II) with diisodecylphosphoric acid in heptanes and dodecane. Analtycal Sci. 17:401–404

    Google Scholar 

  64. Sherif OE, Issa YM, Abbas SM (2000) Thermodynamic parameters of some schiff bases derived from5,7-dihydroxy-6-formyl-2-methylbenzopyran-4-one. Therm Analy Calor 59:913–926

    Article  CAS  Google Scholar 

  65. El-Taher MA, Gabr AA (1996) Medium effect on acidity constants of some heterocyclic nitrogen azomethines. Talanta 43:1511–1518

    Article  CAS  Google Scholar 

  66. Ebead YH, Salman HMA, Abdellah MA (2010) Experimental and theoretical investigations of spectral, tautomerism and acid-base properties of Schiff bases derived from some amino acids. Bull Korean Chem Soc 31:850–858

    Article  CAS  Google Scholar 

  67. Bordbar M, Faal AY, Ahari-Mostafavi MM, Gharagozlou M, Fazaeli R (2013) Multi-wavelength spectrophotometric determination of acidity constants of some salicylaldimine derivatives. J Mol Liquids 178:70–77

    Article  CAS  Google Scholar 

  68. Sarangi K, Reddy BR, Das RP (1999) Extraction studies of cobalt (II) and nickel (II) from chloride solutions using Na-Cyanex 272: separation of Co(II)/Ni(II) by the sodium salts of D2EHPA, PC88A and Cyanex 272 and their mixtures. Hydrometallurgy 52:253–265

    Article  CAS  Google Scholar 

  69. Zhang P, Inoue K, Yoshizuka K, Tsuyama H (1996) Extraction and selective stripping of molybdenum(VI)(VI) and vanadium(V) (IV) from sulphuric acid solution containing aluminium(III)(IV), cobalt(II)(II), nickel(II)(II) and iron(III)(III) by LIX®63 in Exxsol D80. Hydrometallurgy 41:45–53

    Article  CAS  Google Scholar 

  70. Przeszlakowski S, WydraH (1982) Extraction of nickel, cobalt and other metals [Cu, Zn, Fe(III)] with a commercial β-diketone extractant. Hydrometallurgy. 8:49–64

  71. Wassink B, DreisingerD Howard J (2000) Solvent extraction separation of zinc and cadmium from nickel and cobalt using Aliquat 336, a strong base anion exchanger, in the chloride and thiocyanate forms. Hydrometallurgy 57:235–252

    Article  CAS  Google Scholar 

  72. Hirayama N, Takeuchi I, Honjo T (1997) Ion-pair extraction system for the mutual separation of lanthanides using divalent quadridentate Schiff bases. Anal Chem 69:4814–4818

    Article  CAS  Google Scholar 

  73. Fathi SAM, Parinejad M, Yaftian MR (2008) Multidentate nitrogen/oxygen donor ionophores; their use as selective extracting and mobile-carrier agents for copper(II). Sep Purif Technol 64:1–7

    Article  CAS  Google Scholar 

  74. Marcus Y (1990) Ion Solvation, John Wiley

  75. Wisniewski M, Szymanowski J (1998) Palladium(II) extraction and extractant adsorption at a liquid/liquid interface. Analy Sci 14:241–246

    Article  CAS  Google Scholar 

  76. El Aamrani FZ, Kumar A, Cortina JL, Sastre AM (1999) Solvent extraction of copper(II) from chloride media using N-(thiocarbamoyl)benzamidine and N-benzoylthiourea derivatives. Anal Chim Acta 382:205–213

    Article  Google Scholar 

  77. Butvin P, Lubkeova S, Capalova K, Pikulikova Z (1994) Liquid Extraction of Copper(ll) and Some Bivalent Metal Ions by Salicylidenalkylimines and A/-(2-Hydroxybenzyl)alkylamines. Chem Papers 49:15–20

    Google Scholar 

  78. Pashkov GL, Grigorieva NA, Pavlenko NI, Fleitlikh IY, Nikiforova LK, Pleshkov MA (2008) Nickel (II) Extraction from sulphate media with bis(2,4,4-trimetylpentyl) dithiophosphinic acid dissolved in nonane. Solvent Extr Ion Exch 26:749–763

    Article  CAS  Google Scholar 

  79. Sana T, Shiomori K, Kawano Y and Nagayoshi K (2000) Extraction equilibrium of nickel from aqueous ammonium sulfate solution with 5-dodecylsalicylaldoxime in kerosene Solvent Extraction Research and Development. Japan. 7:206-211

  80. Jyothi A, Rao GN (1988) Studies in the extraction metals with 3-phenyl-4-acetyl-5-isoxazolone. Bull Chem Soc Jpn 61:4497–4499

    Article  CAS  Google Scholar 

  81. Imura H, Ikeda H, Nakayama K, Ohashi K (1993) Selectivity in the extraction of copper(II) with a new alkylated 8-quinolinol derivative with a nitrophenylazo substituent. Analy Sci 9:355–359

    Article  CAS  Google Scholar 

  82. Belkhouche NE, Didi MA (2005) Separation of nickel and copper by solvent extraction using di-(2-ethylhexyl)phosphoric acid-based synergistic mixture. Solvent Extr Ion Exch 23:677–693

    Article  CAS  Google Scholar 

  83. Hirayama N, Taga J, Oshima S, Honjo T (2002) Sulfonamide-type di-Schiff base ligands as chelate extraction reagents for divalent metal cations. Anal Chim Acta 466:295–301

    Article  CAS  Google Scholar 

  84. Honjo T, Yashima S, Kiba T (1973) The Analytical Application of Sulfur Analogues of β-Diketones. V. Some Aspects of the Extraction Behavior of STTA (1,1,1-Trifluoro-4-(2-thienyl)-4-mercapto-3-buten-2-one) Complexes and Their Adducts with TOPO. Bull Chem Soc Jpn 46:3772–3779

    Article  CAS  Google Scholar 

  85. Sairoh T, Yamazaki Y, Kamidate T, Watanabe H, Haraguchi K (1992) Steric Effect of Alkyl Substituent on the Extraction of Nickel(II) and Cobalt(ll) by N-Alkylcarbonyl Substituted N-Phenylhydroxylamines. Analy Sci 8:767–771

    Article  Google Scholar 

  86. Wieszczycka K, Krupa M, Wojciechowska A, Olszanowski A (2014) Recovery of nickel(II) ions from sulphate/chloride solutions using hydrophobic pyridylketoximes. Solvent Extr Ion Exch 32:267–280

    Article  CAS  Google Scholar 

  87. Emadi D, Yaftian MR, Rayati S (2007) N,N’-Bis (1′-Hydroxy -2′- Acetonaphthone) propylenediamine: synthesis, extractive properties and use as an ionophore in a Cu(II)-selective potentiometric sensor. Turk J Chem 31:423–433

    CAS  Google Scholar 

  88. Ziyadanogullari B, Ceviziçi D, Temel H, Ziyadanogullari R (2007) Extraction of Copper(II), Nickel(II) and Cobalt(II) with N,N’-Bis(salicylaldehydene)-1,4-bis-(m-aminophenoxy)butane. J Hazard 150:285–289

    Article  Google Scholar 

  89. Yaftian MR, Rayati S, Safarbali R, Torabi N (2007) A new tetradentate N2O2-type Schiff base ligand. Synthesis, extractive properties towards transition metal ions and X-ray crystal structure of its nickel complex. Transition Met Chem 32:374–378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Boceiri.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boceiri, N., Benabdallah, T., Hadj Youcef, M. et al. Synthesis and Characterization of a Novel Series of Amphiphilic Mercapto-1,2,4-Triazole Schiff Base Ligands: Investigation of their Behavior in Hydro-Organic Solutions. J Surfact Deterg 19, 583–597 (2016). https://doi.org/10.1007/s11743-016-1811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1811-1

Keywords

Navigation