Skip to main content
Log in

Genotypic variation in salt tolerance of Ulmus pumila plants obtained by shoot micropropagation

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Siberian elm (Ulmus pumila L.) is a tree native to Asia and is widely cultivated in the other parts of the world due to its resistance to drought, temperature extremes, and salinity. In this study, we obtained nine clones of Siberian elm by in vitro shoot propagation of trees varying in growth, morphological characteristics, and salt tolerance in the field to examine traits linked to salt tolerance. The plantlets were subjected for 2 weeks to 0, 0.3, 0.5, 0.7, 0.8, and 0.9 % (w/v) NaCl and to mixture of salts representative of sea water (NaCl, CaCl, K2SO4, MgSO4, and NaHCO3) to examine the effects on growth, tissue concentrations of major osmolytes, proteins, and chlorophyll, as well as activities of the antioxidant enzymes. While higher salt treatment (both NaCl and mixed salt from 0.7 to 0.9 %) concentrations decreased growth rates in all of the studied clones, 0.3 % NaCl treatment resulted in greater shoot growth parameters of the treated plantlets compared with untreated control. In mixed salt treatments, growth parameters, including shoot relative elongation rate (SRGR), branching rate (BR), and length of new shoots (SL), decreased in the examined clones with the exception of clones 51, 105, and 65225, respectively, in which treatment concentrations as high as 0.3 % NaCl had no effect on shoot length. In both NaCl and mixed salt treatments, the antioxidant enzymes (SOD, POD, and CAT) in most of these clones increased at 0.3–0.7 % (or 0.8 %) treatment concentrations and decreased at 0.8–0.9 % salt treatments; malondialdehyde (MDA) content increased with the growing of the salt concentrations; soluble protein and chlorophyll content show a decreased tendency with the raising of the salt concentrations; in most elm clones, sugar and free proline (Pro) content accumulate at 0.3–0.8 % salt treatment decreased in 0.9 % salt treatment. In mixed salt treatment, the superoxide (SOD) shows more activities in most of the clones compared with NaCl treatment. In most clones, chlorophyll concentrations were greater in NaCl compared with mixed salt treatment in 0.8–0.9 % concentrations; the decrease of soluble protein concentrations in the mixed salt was lower compared with NaCl treatment. Using the membership function and cluster analyses, the clones were classified into four distinctly different groups in terms of their salt tolerance. The differences in responses of the examined physiological parameters to salt treatments between these clones with different salt-tolerance capacities point to the importance of osmoregulation and maintenance of antioxidant enzyme activities in salt tolerance of Siberian elm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1983) Catalase. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Academic Press, New York, pp 276–286

    Google Scholar 

  • Ahmad P, Sharma S, Srivastava PS (2007) In vitro selection of NaHCO3 tolerant cultivars of Morus alba (Local and Sujanpuri) in response to morphological and biochemical parameters. Hortic Sci 34:115–123

    Google Scholar 

  • Alhendawi RA, Römheld V, Kirkby EA, Marschner H (1997) Influence of increasing bicarbonate concentrations on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum, and maize. J Plant Nutr 20:1731–1753

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts—polyphenoloxidase in beta-vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Barakat MN, Abdel-Latif TH (1996) In vitro selection of wheat callus tolerant to high levels of salt and plant regeneration. Euphytica 91:127–140

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovic I (1971) Superoxide dismutase—improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Ben JH, Hassairi A, Bigot C, Dorion N (1998) Adventitious shoot production from strips of stem in the Dutch elm hybrid ‘Commelin’: plantlet regeneration and neomycin sensitivity. Plant Cell Tissue Organ Cult 53:153–160

    Article  Google Scholar 

  • Ben JH, Bigot C, Dorion N (2000) Plant regeneration from leaves of Ulmus 9 ‘Commelin’. In: ISHS Acta Horticulturae 520: XXV international horticultural congress, Part 10: application of biotechnology and molecular biology and breeding—in vitro culture, Brussels, Belgium

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brownell PF, Bielig LM (1996) The role of sodium in the conversion of pyruvate to phosphoenolpyruvate in mesophyll chloroplasts of C4 plants. Funct Plant Biol 23:171–177

    CAS  Google Scholar 

  • Calvo-Polanco M, Zwiazek JJ, Jones MD, MacKinnon MD (2009) Effects of NaCl on responses of ectomycorrhizal black spruce (Picea mariana), white spruce (Picea glauca) and jack pine (Pinus banksiana) to fluoride. Physiol Plant 135:51–61

    Article  CAS  PubMed  Google Scholar 

  • Cha-um S, Somsueb S, Samphumphuang T, Kirdmanee C (2013) Salt tolerant screening in eucalypt genotypes (Eucalyptus spp.) using photosynthetic abilities, proline accumulation, and growth characteristics as effective indices. In Vitro Cell Dev-Plant 49:611–619

    Article  CAS  Google Scholar 

  • Chen X, Min D, Yasir TA, Hu Y-G (2012) Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crop Res 137:195–201

    Article  Google Scholar 

  • Cheng Z-M, Shi N-Q (1995) Micropropagation of mature Siberian elm in two steps. Plant Cell Tissue Organ Cult 41:197–199

    Article  Google Scholar 

  • Civello PM, Martinez GA, Chaves AR, Anon MC (1995) Peroxidase from strawberry fruit (Fragaria Ananassa-Duch)—partial-purification and determination of some properties. J Agric Food Chem 43:2596–2601

    Article  CAS  Google Scholar 

  • Conde P, Santos C (2006) An efficient protocol for Ulmus minor Mill. protoplast isolation and culture in agarose droplets. Plant Cell Tissue Organ Cult 86:359–366

    Article  Google Scholar 

  • Conde P, Loureiro J, Santos C (2004) Somatic embryogenesis and plant regeneration from leaves of Ulmus minor Mill. Plant Cell Rep 22:632–639

    Article  CAS  PubMed  Google Scholar 

  • Conde P, Sousa A, Costa A, Santos C (2008) A protocol for Ulmus minor Mill micropropagation and acclimatization. Plant Cell Tissue Organ Cult 92:113–119

    Article  Google Scholar 

  • Corchete MP, Diez JJ, Valle T (1993) Micropropagation of Ulmus pumila L. from mature trees. Plant Cell Rep 12:534–536

    Article  CAS  PubMed  Google Scholar 

  • Corredoira E, Vieitez AM, Ballester A (2003) Proliferation and maintenance of embryogenic capacity in elm embryogenic cultures. In Vitro Cell Dev Biol Plant 39:394–401

    Article  Google Scholar 

  • Croser C, Renault S, Franklin J, Zwiazek JJ (2001) The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environ Pollut 115:9–16

    Article  CAS  PubMed  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in 2 mosses—correlated with enzymatic defense against lipid-peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  • Durkovic J, Canova I, Priwitzer T, Biroscıkova M, Kapral P, Saniga M (2010) Field assessment of photosynthetic characteristics in micropropagated and grafted wych elm (Ulmus glabra Huds.) trees. Plant Cell Tissue Organ Cult 101:221–228

    Article  CAS  Google Scholar 

  • Durzan DJ, Lopushanski SM (1975) Propagation of American elm via cell suspension culture. Can J For Res 5:273–277

    Article  Google Scholar 

  • Dziadczyk P, Bolibok H, Tyrka M, Hortynski JA (2003) In vitro selection of strawberry (Fragaria × ananassa Duch.) clones tolerant to salt stress. Euphytica 132:49–55

    Article  CAS  Google Scholar 

  • Elavumoottil OC, Martin JP, Moreno ML (2003) Changes in sugars, sucrose synthase activity and proteins in salinity tolerant callus and cell suspension cultures of Brassica oleracea L. Biol Plant 46:7–12

    Article  CAS  Google Scholar 

  • Evers D, Schmit C, Mailliet Y, Hausman JF (1997) Growth characteristics and biochemical changes of poplar shoots in vitro under sodium chloride stress. J Plant Physiol 151:748–753

    Article  CAS  Google Scholar 

  • Feng ZT, Deng YQ, Fan H, Sun QJ, Sui N, Wang BS (2014) Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture. Photosynthetica 52:313–320

    Article  CAS  Google Scholar 

  • Fenning TM, Gartland KMA, Brasier CM (1993) Micropropagation and regeneration of English elm, Ulmus procera Salisbury. J Exp Bot 44:1211–1217

    Article  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • George MW, Tripepi RR (1994) Cytokinins, donor plants and time in culture affect shoot regenerative capacity of American elm leaves. Plant Cell Tissue Organ Cult 39:27–36

    Article  CAS  Google Scholar 

  • Hajiboland R, Yang XE, Römheld V, Neumann G (2005) Effect of bicarbonate on elongation and distribution of organic acids in root and root zone of Zn-efficient and Zn-inefficient rice (Oryza sativa L.) genotypes. Environ Exp Bot 54:163–173

    Article  CAS  Google Scholar 

  • Haneklaus S, Knudsen L, Schnug E (1998) Relationship between potassium and sodium in sugar beet. Commun Soil Sci Plant Anal 29:1793–1798

    Article  CAS  Google Scholar 

  • Hassan NM, Serag MS, El-Feky FM (2004) Changes in nitrogen content and protein profiles following in vitro selection of NaCl resistant mung bean and tomato. Acta Physiol Plant 26:165–175

    Article  CAS  Google Scholar 

  • He S, Han Y, Wang Y, Zhai H, Liu Q (2009) In vitro selection and identification of sweetpotato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl. Plant Cell Tissue Organ Cult 96:69–74

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:11

    Article  PubMed  Google Scholar 

  • Kapaun JA, Cheng Z-M (1997) Plant regeneration from leaf tissues of Siberian elm. Hortic Sci 32:301–303

    CAS  Google Scholar 

  • Koc NK, Bas B, Koc M, Kusek M (2009) Investigations of in vitro selection for salt tolerant lines in sour orange (Citrus aurantium L.). Biotechnology 8:155–159

    Article  Google Scholar 

  • Krajňáková J, Longauer R (1996) Culture initiation, multiplication and identification of in vitro regenerants of resistant hybrid elms. Lesnictví-Forestry 42:261–270

    Google Scholar 

  • Kripkyy O, Kerkeb L, Molina A, Belver A, Rodrigues Rosales P, Donaire PJ (2001) Effects of salt-adaptation and salt-stress on extracellular acidification and microsome phosphohydrolase activities in tomato cell suspensions. Plant Cell Tissue Organ Cult 66:41–47

    Article  CAS  Google Scholar 

  • Lee SH, Zwiazek JJ (2015) Regulation of aquaporin-mediated water transport in Arabidopsis roots exposed to NaCl. Plant Cell Physiol 56:750–758

    Article  PubMed  Google Scholar 

  • Liu T, Staden JV (2000) Selection and characterization of sodium chloride-tolerant callus of Glycine max (L.) Merr cv. Acme. Plant Growth Reg 31:195–207

    Article  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regul 19:207–218

    Article  CAS  Google Scholar 

  • Magat SS, Goh KM (1990) Effect of chloride fertilizers on ionic composition and cation-anion balance and ratio of fodder beet (Beta vulgaris L.) grown under field conditions. N Zeal J Agric Res 33:29–40

    Article  Google Scholar 

  • Mala J (2000) Micropropagation of mature elm trees in vitro. J For Sci 46:260–264

    Google Scholar 

  • Mamo T, Richter C, Heiligtag B (1996) Salinity effects on the growth and ion contents of some chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medic.) varieties. J Agron Crop Sci 176:235–247

    Article  CAS  Google Scholar 

  • Marschner H (1971) Why can sodium replace potassium in plants? In: Potassium in biochemistry and physiology. 8th colloquium of the International Potash Institute, Berne, Switzerland

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Mi YF, Ma XW, Chen SC (2013) Resistant evaluation of kiwifruit rootstocks to root zone hypoxia stress. Am J Plant Sci 4:945–954

    Article  Google Scholar 

  • Milford GFJ, Cormack WF, Durrant MJ (1977) Effects of sodium chloride on water status and growth of sugar beet. J Exp Bot 28:1380–1388

    Article  CAS  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A (2010) Biochemical mechanisms of salt tolerance in plants: a review. Int J Bot 6:136–143

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murata S, Kobayashi M, Matoh T, Sekiya J (1992) Sodium stimulates regeneration of phosphoenolpyruvate in mesophyll chloroplasts of Amaranthus tricolor. Plant Cell Physiol 33:1247–1250

    CAS  Google Scholar 

  • Pessarakli M, Marcum KB, Kopec DM (2006) Growth responses and nitrogen-15 absorption of desert saltgrass under salt stress. J Plant Nutr 28:1441–1452

    Article  Google Scholar 

  • Queiros F, Fidalgo F, Santos I, Salema R (2007) In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol Plant 51:728–734

    Article  CAS  Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Environ Exp Bot 71:89–98

    Article  Google Scholar 

  • Renault S, Croser C, Franklin JA, Zwiazek JJ (2001) Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx) seedlings. Plant Soil 233:261–268

    Article  CAS  Google Scholar 

  • Rout GR, Senapati SK, Panda JJ (2008) Selection of salt tolerant plants of Nicotiana tabacum L. through in vitro and its biochemical characterization. Acta Biol Hung 59:77–92

    Article  CAS  PubMed  Google Scholar 

  • Sadasivam S, Manickam A (1996) Biochemical methods (revised second edition). New Age International, New Delhi, pp 8–9

    Google Scholar 

  • Saied AS, Keutgen AJ, Noga G (2005) The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’ and ‘Korona’. Sci Hortic 103:289–303

    Article  CAS  Google Scholar 

  • Shankhdhar D, Shankhdhar SC, Mani SC, PantIn RC (2000) Vitro selection for salt tolerance in rice. Biol Plant 43:477–480

    Article  CAS  Google Scholar 

  • Song FN, Yang CP, Liu XM, Li GB (2006) Effect of salt stress on activity of superoxide dismutase (SOD) in Ulmus pumila L. J For Res 17:13–16

    Article  CAS  Google Scholar 

  • Sticklen MB, Lineberger RD, Domir SC (1985) Isolation and culture of protoplasts of Ulmus · ‘Homestead’. Plant Sci 41:117–120

    Article  CAS  Google Scholar 

  • Sticklen MB, Domir SC, Lineberger RD (1986) Shoot regeneration from protoplasts of Ulmus · ‘Pioneer’. Plant Sci 47:29–34

    Article  CAS  Google Scholar 

  • Subbarao GV, Wheeler RM, Stutte GW, Levine LH (1999) How far can sodium substitute for potassium in red beet? J Plant Nutr 22:1745–1761

    Article  CAS  PubMed  Google Scholar 

  • Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium—a functional plant nutrient. Crit Rev Plant Sci 22:391–416

    Google Scholar 

  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161:613–619

    Article  CAS  Google Scholar 

  • Szabolics I (1994) Soils and salinization. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 3–11

    Google Scholar 

  • Tang M, Sheng M, Chen H, Zhang FF (2009) In vitro salinity resistance of three ectomycorrhizal fungi. Soil Biol Biochem 41:948–953

    Article  CAS  Google Scholar 

  • Thakur RC, Karnosky DF (2007) Micropropagation and germplasm conservation of Central Park Splendor Chinese elm (Ulmus parvifolia Jacq. ‘A/Ross Central Park’) trees. Plant Cell Rep 26:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Troncoso J, Liñán J, Cantos M, García JL, Troncoso A (2008) In vitro selection of salt-tolerant olive clones. Acta Hortic 791:217–223

    Article  CAS  Google Scholar 

  • Vajrabhaya M, Thanapaisal T, Vajrabhaya T (1989) Development of salt tolerant lines of KDML and LPT rice cultivars through tissue culture. Plant Cell Rep 8:411–414

    Article  CAS  PubMed  Google Scholar 

  • Vijayan K (2009) Approaches for enhancing salt tolerance in mulberry (Morus L)—a review. Plant Omics 2:41–59

    CAS  Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Physiological ecology. Academic Press, New York, p xi

    Book  Google Scholar 

  • Werkhoven CHE, Salisbury PJ, Cram WH (1966) Germination and survival of colorado spruce scots pine caragana and siberian elm at 4 salinity and 2 moisture levels. Can J Plant Sci 46:1–7

    Article  Google Scholar 

  • Woolley JT (1957) Sodium and silicon as nutrients for the tomato plant. Plant Physiol 32:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye JM, Kao KN, Harvey BL, Rossnagel BG (1987) Screening salt-tolerant barley genotypes via F1 anther culture in salt stress media. Theor Appl Genet 74:426–429

    Article  CAS  PubMed  Google Scholar 

  • Zhang D-L (1984) Elm. China Forestry Publishing House, Beijing

    Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2011) Mechanisms of plants salt response: insights from proteomics. J Proteome Res 11:49–67

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge funding support from the World Bank loan project (Shandong Ecological Afforestation Project P112759, Funding No.: SEAP-PY-3). We thank the China Scholarship Council (CSC) for providing funding to Deyu Mu in the form of living allowance to study in J. J. Zwiazek’s laboratory. We also thank Dr. Chen Ding for help with the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouqi Li.

Additional information

Communicated by W. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, D., Zwiazek, J.J., Li, Z. et al. Genotypic variation in salt tolerance of Ulmus pumila plants obtained by shoot micropropagation. Acta Physiol Plant 38, 188 (2016). https://doi.org/10.1007/s11738-016-2189-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2189-4

Keywords

Navigation