Skip to main content

Advertisement

Log in

Xylem cavitation affects the recovery of plant water status and consequently acorn production in a holm oak open woodland

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The hydraulic conductivity and gas exchange parameters of holm oak trees (Quercus ilex ssp. ballota (Desf.) Samp.) from an open woodland ecosystem in southwestern Spain were determined in young shoots (≤1 year old) over the course of 3 years, at 6–7 week intervals. Acorn production (AP) was also determined. Specific hydraulic conductivity (K s), leaf specific hydraulic conductivity (K l), loss of hydraulic conductivity (PLC), and xylem water potential (Ψ) were assessed. In addition, histological cuttings of stem cross sections were examined to determine the density and diameter of xylem vessels. Acorn production was related to mid-summer K s and PLC values, but not for other dates or to parameters associated with instantaneous gas exchange. Although AP may depend on several physiological and climatic variables, these results indicated a close non-linear relation between hydraulic conductivity during periods of summer water stress and AP. It was difficult to recover xylem conductivity after a rain event when the PLC of twigs exceeded a threshold of approximately 68 %, which therefore had a negative effect on the AP. However, if the PLC ≤ 55 %, then the hydraulic conductivity and Ψ could be quickly recovered after a rain event and the effect of water stress would have less importance. Because holm oak usually operates at the limits of safety for hydraulic conductivity, which are surpassed under severe water stress (Ψ predawn ≤ −3.0 MPa), a global change scenario leading to drier conditions in the Mediterranean basin will increase the negative effects of summer drought on AP, leading to negative consequences for the ecosystem dynamics. The right choice of drought-adapted ecotypes and silvicultural practices that increase soil water retention and reduce plant competition should be taken into account for forest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrantes J, Campelo F, García-González I, Nabais C (2013) Environmental control of vessel traits in Q. ilex under Mediterranean climate: relating xylem anatomy to function. Trees 27:655–662

    Article  Google Scholar 

  • AEMET (2009) Generación de escenarios regionalizados de cambio climático para España. Ed. Agencia Estatal de Meteorología. Ministerio de Medio Ambiente, medio rural y Marino, Madrid, Spain, pp 158

  • Alejano R, Tapias R, Fernández M, Torres E, Alaejos J, Domingo J (2008) The influence of pruning and climatic conditions on acorn production in holm oak (Q. ilex L.) dehesas in SW Spain. Ann For Sci 65:209–215

    Article  Google Scholar 

  • Alejano R, Vázquez-Piqué J, Carevic F, Fernández M (2011) Do ecological and silvicultural factors influence acorn mass in holm oak (southwestern Spain)? Agroforest Syst 83:25–29

    Article  Google Scholar 

  • Andivia E, Carevic F, Fernández M, Alejano R, Vázquez-Piqué J, Tapias R (2012) Seasonal evolution of water status after outplanting of two provenances of holm oak nursery seedlings. New Forest 43:815–824

    Article  Google Scholar 

  • Aranda I, Gil L, Pardos J (2005) Seasonal changes in apparent hydraulic conductance and their implications for water use of European beech (Fagus sylvatica L.) and sessile oak [Quercus petraea (Matt.) Liebl] in South Europe. Plant Ecol 179:155–167

    Article  Google Scholar 

  • Camarero JJ, Albuixech JJ, López-Lozano R, Casterad MA, Montserrat-Martí G (2010) An increase in canopy cover leads to masting in Q. ilex. Trees 24:909–918

    Article  Google Scholar 

  • Cañellas I, Roig S, Poblaciones M, Gea-Izquierdo G, Olea L (2007) An approach to acorn production in Iberian dehesas. Agroforest Syst 70:3–9

    Article  Google Scholar 

  • Carevic FS, Fernández M, Alejano R, Vazquez-Piqué J, Tapias R, Corral E, Domingo J (2010) Plant water relations and edaphoclimatic conditions affecting acorn production in a holm oak (Q. ilex ssp. ballota) open woodland. Agroforest Syst 78:299–308

    Article  Google Scholar 

  • Cochard H, Damour G, Bodet Ch, Tharwat I, Poirier M, Améglio Th (2005) Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiol Plant 124:410–418

    Article  CAS  Google Scholar 

  • Corcuera L, Camarero J, Sisó S, Gil-Pelegrín E (2004) Effects of a severe drought on Q. ilex radial growth and xylem anatomy. Trees 18:83–92

    Article  Google Scholar 

  • Cruiziat P, Cochard H, Améglio T (2002) The hydraulic architecture of trees: main concepts and results. Ann For Sci 59:723–752

    Article  Google Scholar 

  • García-Mozo H, Gómez-Casero M, Domínguez E, Galán C (2007) Influence of pollen emission and weather-related factors on variations in holm-oak (Q. ilex ssp. ballota) acorn production. Environ Exp Bot 61:35–40

    Article  Google Scholar 

  • Greenberg C (2000) Individual variation in acorn production by five species of Southern Appalachian oaks. For Ecol Manage 132:199–210

    Article  Google Scholar 

  • Hoff C, Rambal S (2003) An examination of the interaction between climate, soil and leaf area index in a Q. ilex ecosystem. Ann For Sci 60:153–161

    Article  Google Scholar 

  • IPCC (2013) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Cambridge University Press, New York, p 1522

    Google Scholar 

  • Jansen S, Gortan E, Lens F, Lo Gullo FA, Salleo S, Scholz A, Stein A, Trifilò P, Nardini A (2011) Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem? New Phytol 189:218–228

    Article  PubMed  Google Scholar 

  • Junta de Andalucía (2008) Caracterización socioeconómica de la dehesa de Andalucía. Consejería de Agricultura y Pesca, pp 437

  • Koenig W, Mumme R, Carmen W, Stanback M (1994) Acorn production by oaks in central coastal California: variation within and among years. Ecology 75:99–109

    Article  Google Scholar 

  • Landsberg J, Gower S (1997) Forest hydrology and tree-water relations. In: Landsberg S, Gower S (eds) Applications of physiological ecology to forest management. Academic Press, San Diego, pp 89–124

    Chapter  Google Scholar 

  • Leal S, Sousa V, Pereira H (2007) Radial variation of vessel size and distribution in cork oak wood (Q. suber L.). Wood Sci Technol 41:339–350

    Article  CAS  Google Scholar 

  • Limousin JM, Longepierre D, Huc R, Rambal S (2010) Change in hydraulic traits of Mediterranean Q. ilex subjected to long-term throughfall exclusion. Tree Physiol 30:1026–1036

    Article  PubMed  Google Scholar 

  • Lo Gullo M, Salleo S (1993) Different vulnerabilities of Q. ilex L. to freeze- and summer drought-induced xylem embolism: an ecological interpretation. Plant Cell Environ 16:511–519

    Article  Google Scholar 

  • Lo Gullo M, Nardini A, Trifilò P, Salleo S (2003a) Changes in leaf hydraulics and stomatal conductance following drought stress and irrigation in Ceratonia siliqua (Carob tree). Physiol Plant 117:186–194

    Article  CAS  Google Scholar 

  • Lo Gullo M, Salleo S, Rosso R, Trifilò P (2003b) Drought resistance of 2-year-old saplings of Mediterranean forest trees in the field: relations between water relations, hydraulics and productivity. Plant Soil 250:259–272

    Article  CAS  Google Scholar 

  • Lucas W, Groover A, Lichtenberger R, Furuta K, Yadav S, Helariutta Y, He XQ, Fukuda H, Kang J, Brady S, Patrick JW, Sperry J, Yoshida A, Lopez-Millan A, Grusak M, Kachroo P (2013) The plant vascular system: evolution development and functions. J Integr Plant Biol 44:294–388

    Article  Google Scholar 

  • Magnani F, Borghetti M (1995) Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance in Fagus sylvatica. Plant Cell Environ 18:689–696

    Article  Google Scholar 

  • Martín D, Alejano R, Vázquez-Piqué J, Tapias R (2009) Evolución del crecimiento radial de Q. ilex L. ssp. ballota (Desf.) Samp y Q. suber L. en la provincia de Huelva. Influencia de parámetros climáticos, selvícolas y humedad de suelo. Actas del V Congreso Forestal Español, Ávila, Spain

  • Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29

    Article  PubMed  Google Scholar 

  • McElrone A, Pockman W, Martinez-Vilalta J, Jackson R (2004) Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytol 163:507–517

    Article  Google Scholar 

  • Moreno G, Cubera E (2008) Impact of stand density on water status and leaf gas exchange in Q. ilex. For Ecol Manage 254:74–84

    Article  Google Scholar 

  • Moreno G, Obrador J, García E, Cubera E, Montero M, Pulido F, Dupraz C (2007) Driving competitive and facilitative interactions in oak dehesas through management practices. Agroforest Syst 70:25–40

    Article  Google Scholar 

  • Ogaya R, Peñuelas J (2003) Comparative field study of Q. ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ Exp Bot 50:137–148

    Article  Google Scholar 

  • Ogaya R, Peñuelas J (2007) Seasonal ultrasonic acoustic emissions of Q. ilex L. trees in a Mediterranean forest. Acta Physiol Plant 29:407–410

    Article  Google Scholar 

  • Oliveira G, Correia O, Martins-Loução M, Catarino F (1992) Water relations of cork-oak (Q. suber L.) under natural conditions. Plant Ecol 99:199–208

    Article  Google Scholar 

  • Pérez-Ramos IM, Ourcival JM, Limousin JM, Rambal S (2010) Mast seeding under increasing drought: results from a long-term data set and from a rainfall exclusion experiment. Ecology 91:3057–3068

    Article  PubMed  Google Scholar 

  • Perry R, Thill R (2003) Initial effects of reproduction cutting treatments on residual hard mast production in the Ouachita mountains. South J Appl For 27:253–258

    Google Scholar 

  • Plieninger T, Wilbrand C (2001) Land use, biodiversity conservation, and rural development in the dehesas of Cuatro Lugares, Spain. Agroforest Syst 51:23–34

    Article  Google Scholar 

  • Rodríguez-Estévez V, García A, Perea J, Mata C, Gómez A (2007) Producción de bellota en la dehesa: factores influyentes. Arch Zootec 56:25–43

    Google Scholar 

  • Savé R, Terradas J, Castell C (1999) Gas exchange and water relations. In: Rodá F, Gracia C, Retana J, Bellot J (eds) The ecology of Mediterranean evergreen Oak forests. Springer, Berlin, pp 135–147

    Chapter  Google Scholar 

  • Siscart D, Diego V, Lloret F (1999) Acorn ecology. In: Rodá F, Gracia C, Retana J, Bellot J (eds) The ecology of Mediterranean evergreen Oak forests. Springer, Berlin, pp 75–87

    Chapter  Google Scholar 

  • Sparks J, Campbell G, Black A (2001) Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study. Oecologia 127:468–475

    Article  Google Scholar 

  • Sperry J, Donnelly J, Tyree M (1988) A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ 11:35–40

    Article  Google Scholar 

  • Tognetti R, Giovannelli A, Longobucco A, Miglietta F, Raschi A (1996) Water relations of oak species growing in the natural CO2 spring of Rapolano (central Italy). Ann Sci For 53:475–485

    Article  Google Scholar 

  • Tognetti R, Longobucco A, Raschi A (1998) Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Q. pubescens and Q. ilex co-occurring in a Mediterranean coppice stand in central Italy. New Phytol 139:437–447

    Article  Google Scholar 

  • Tognetti R, Longobucco A, Raschi A (1999) Seasonal embolism and xylem vulnerability in deciduous and evergreen Mediterranean trees influenced by proximity to a carbon dioxide spring. Tree Physiol 19:271–277

    Article  PubMed  Google Scholar 

  • Tyree M, Cochard H (1996) Summer and winter embolism in oak: impact on water relations. Ann For Sci 53:173–180

    Article  Google Scholar 

  • Tyree M, Ewers F (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Article  Google Scholar 

  • Villar-Salvador P, Castro-Diez P, Perez-Rontome C, Montserrat-Marti G (1997) Stem xylem features in three Q. (Fagaceae) species along a climatic gradient in NE Spain. Trees 12:90–96

    Google Scholar 

  • Villar-Salvador P, Planelles R, Oliet J, Peñuelas-Rubira JL, Jacobs DF, González M (2004) Drought tolerance and transplanting performance of holm oak (Q. ilex) seedlings alter drought hardening in the nursery. Tree Physiol 24:1147–1155

    Article  PubMed  Google Scholar 

  • Zimmermann M (1983) Xylem structure and the ascent of sap. Springer, New York, p 143

    Book  Google Scholar 

Download references

Acknowledgments

This research was financed by the Regional Autonomous Government of Andalusia (ref: C03-192), MEC-INIA (ref: SUM2006-00026-00-00) and Conicyt (Project number: 791100012). We would like to thank Daniel Martín, Arantza González, and Enrique Andivia for their collaboration and valuable assistance in field work. The authors also wish to thank the Provincial Government of Huelva, two anonymous reviewers and AECID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Carevic.

Additional information

Communicated by P. Sowinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carevic, F., Fernández, M., Alejano, R. et al. Xylem cavitation affects the recovery of plant water status and consequently acorn production in a holm oak open woodland. Acta Physiol Plant 36, 3283–3290 (2014). https://doi.org/10.1007/s11738-014-1694-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1694-6

Keywords

Navigation