Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 137))

Abstract

Mediterranean environments are often characterized by a double stress: summer drought and winter cold (Mitrakos 1980; Miller 1981; Terradas and Savé 1992). Summer drought results from the coincidence of low summer precipitation with high temperature, high irradiance, and high water vapour pressure deficit (Di Castri and Mooney 1973); it has been traditionally recognized as the main climate constraint characterizing Mediterranean-type ecosystems. However, some degree of stress can be also due to winter cold, which may be determinant in montane and/or continental sites. This is reflected in the seasonal patterns of plant activity. Photosynthetic activity is typically relatively high in spring, decreases strongly in summer due to drought (Oechel et al. 1981, Tenhunen et al. 1990), increases again after the first autumn rains, and decreases or ceases during the winter months. Plant growth and leaf transpiration may follow similar patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acherar M, Rambal S (1992) Comparative water relations of four Mediterranean oak species. Vegetatio 99/100:177–184

    Article  Google Scholar 

  • Aussenac G, Vallette JC (1982) Comportement hydrique estival de Cedrus arlantica Manettl,Quercus ilex L. et Quercus pubescens Will. et de divers pins dans le Mont Ventoux. Ann Sci For 39:41–62

    Article  Google Scholar 

  • Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (1987) Allocating resources to reproduction and defense. BioScience 37:58–67

    Article  Google Scholar 

  • Berger A, Eckardt FE, Méthy M, Heim G, Sauvezon R (1977) Interception de l’énergie rayonnante, échange de CO2, régime hydrique et production chez différents types de végétation sous climat méditerranéen. In: Moyse A (ed) Les processus de la production végétale primaire. Gauthier Villars, Paris, pp 1–15

    Google Scholar 

  • Burriel JA, Calvet S, Sala A, Gracia CA (1993) Ángulo foliar en Quercus ilex modulación por el ambiente, y contribución a la economía hídrica de la planta. In: Silva FJ, Vega G (eds) Congr Forestal Español, Ponencias y Comunicaciones, vol 1. Xunta de Galicia, Louriz¨¢n, Pontevedra, pp 225–232

    Google Scholar 

  • Castell C, Terradas J, Tenhunen JD (1994) Water relations, gas exchange, and growth of resprouts and mature plant shoots of Arbutus unedo L. and Quercus ilex L. Oecologia 98:201–211

    Article  Google Scholar 

  • Comfín M P, Escarré A, Gracia CA, Lledó MJ, Rabella, R, Savé R, Terradas J (1987) Water use by Quercus ilex L. in forests near Barcelona, Spain. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress: functional analysis in Mediterranean ecosystems. Springer, Berlin, pp 259–266

    Google Scholar 

  • Correia MJ, Chaves MMC, Pereira JS (1990) Afternoon depression in photosynthesis in grapevine leaves. Evidence for a high light stress effect. J Exp Bot 41:417–426

    Article  Google Scholar 

  • Di Castri F, Mooney HA (eds) (1973) Mediterranean-type ecosystems. Springer, New York

    Google Scholar 

  • Espelta JM (1996) La regeneració de boscos d’;alzina (Quercus ilex L.) i pi blanc (Pinus halepensis Mill.): estudi experimental de la resposta de les plàntules a la intensitat de llum i a la disponibilitat d’aigua. PhD Thesis, Autonomous University of Barcelona, Bellaterra

    Google Scholar 

  • Fleck I, Grau D, Sanjosé M, Vidal D (1996) Carbon isotope discrimination in Quercus ilex resprouts after fire and tree fell. Oecologia 105:286–292

    Article  Google Scholar 

  • Gartner BL (1995) Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In: Gartner BL (ed) Plant stems. Physiology and functional morphology. Academic Press, San Diego, pp 125–149

    Google Scholar 

  • Ilijanic L, Gracanin M (1972) Zum Wasserhaushalt einiger mediterraner Pflanzen. Ber Dtsch Bot Ges 85:329–339

    Google Scholar 

  • Kyriakopoulos E, Larcher W (1976) Saugspannungsdiagramm fur austrocknende Blater von Quercus ilex L. Z Pflanzenphysiol 77:268–271

    Google Scholar 

  • Kyriakopoulos E, Richter H (1977) A comparison of methods for the determination of water status in Quercus ilex L. Z Pflanzenphysiol 82:14–27

    Google Scholar 

  • Kyriakopoulos E, Richter H (1991) Desiccation tolerance and osmotic parameters in detached leaves of Quercus ilex Acta Oecol 12:357–367

    Google Scholar 

  • Larcher W (1960) Transpiration and photosynthesis of detached leaves and shoots of Quercus pubescens and Quercus ilex during desiccation under standard conditions. Bull Res Counc Isr 8D:213–224

    Google Scholar 

  • Larcher W (1980) Physiological plant ecology. Springer, Berlin

    Book  Google Scholar 

  • Larcher W (1981) Low temperature effects on Mediterranean sclerophylls: an unconventional viewpoint. In: Margaris NS, Mooney HA (eds) Components of productivity of Mediterranean-climate regions. Dr W Junk Publishers, The Hague, pp 259–266

    Chapter  Google Scholar 

  • Leonardi S, Rapp M (1990) Production de phytomasse et utilisation des bioéléments lors de la reconstitution d’un taillis de chêne vert. Acta Oecol 11:819–834

    Google Scholar 

  • Lo Gullo MA, Salleo S (1993) Different vulnerabilities of Quercus ilex L. to freeze-and summer drought-induced xylem embolism: an ecological interpretation. Plant Cell Environ 16:511–516

    Article  Google Scholar 

  • Lo Gullo MA, Salleo S, Piaceri EC, Rosso R (1995) Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris Plant Cell Environ 18:661–669

    Article  Google Scholar 

  • Lossaint P, Rapp M (1978) La forêt méditerranéenne de chênes verts. In: Lamotte M, Bourlière F (eds) Problèmes d’écologie: structure et fonctionnement des écosystèmes terrestres. Masson, Paris, pp 129–185

    Google Scholar 

  • Loveless AR (1961) A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann Bot 25:168–184

    CAS  Google Scholar 

  • Margaris SN (1981) Adaptative strategies in plants dominating Mediterranean-type ecosystems. In: Di Castri F, Goodall DW, Specht RL (eds) Mediterranean-type shrublands. Elsevier, New York, pp 309–314

    Google Scholar 

  • Miller PC (1981) Conceptual basis and organization of research. In: Miller PC (ed) Resource use by chaparral and matorral. Springer, New York

    Chapter  Google Scholar 

  • Mitrakos (1980) A theory for Mediterranean plant-life. Oecol Plant 1:245–252

    Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35:299–319

    Article  Google Scholar 

  • Morris JT (1989) Modelling light distribution within the canopy of the marsh grass Spartina alterniflora as a function of canopy biomass and solar angle. Agric For Meteorol 46:349–361

    Article  Google Scholar 

  • Oechel WC, Lawrence W, Mustafa J, Martínez J (1981) Energy and carbon acquisition. In: Miller PC (ed) Resource use by chaparral and matorral. Springer, Berlin, pp 151–184

    Chapter  Google Scholar 

  • Oliveira G (1995) Autecologia do sobreiro (Quercus suber L.) em montados portugueses. PhD Thesis, University of Lisboa, Lisboa

    Google Scholar 

  • Oliveira G, Correira OA, Martins-Louçao MA, Catarino FM (1992) Water relations of cork-oak (Quercus suber L.) under natural conditions. Vegetatio 99/100:199–208

    Article  Google Scholar 

  • Rabella R (1991) Ecofisiologia de les relacions hídriques del faig al Montseny. PhD Thesis, Autonomous University of Barcelona, Bellaterra

    Google Scholar 

  • Rabella R, Savé R, Terradas J (1983) Conducta hídrica vertical del encinar montano de La Castanya (Montseny). V Reunión de la Sociedad Española de Fisiología Vegetal, Murcia

    Google Scholar 

  • Rambal S (1992) Quercus ilex facing water stress: a functional equilibrium hypothesis. Vegetatio 99/100:147–153

    Article  Google Scholar 

  • Rambal S, Debussche G (1995) Water balance of Mediterranean ecosystems under a changing climate. In: Moreno JM, Oechel WC (eds) Global change and Mediterranean-type ecosystems. Springer, New York, pp 386–407

    Chapter  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Springer, Berlin

    Book  Google Scholar 

  • Sala A, Tenhunen JD (1994) Site-specific water relations and stomatal response of Quercus ilex L. in a Mediterranean watershed. Tree Physiol 14:601–617

    Article  PubMed  Google Scholar 

  • Sala A, Tenhunen JD (1996) Simulations of canopy net photosynthesis and transpiration in Quercus ilex L. under the influence of seasonal drought. Agric For Meteorol 78:203–222

    Article  Google Scholar 

  • Sala A, Pícolo R, Piñol J (1988) Efectos del frío en las relaciones hídricas de Quercus ilex en la sierra de Prades (Tarragona). Options Méditerr 3:57–62

    Google Scholar 

  • Sala A, Burriel JA, Tenhunen JD (1990) Spatial and temporal controls on transpiration within a watershed dominated by Quercus ilex Proc on Quercus ilex L. ecosystems: function, dynamics and management, Montpellier-Barcelona, September 1990

    Google Scholar 

  • Salleo S, Lo Gullo MA (1990) Sclerophylly and plant water relations in three Mediterranean Quercus species. Ann Bot 65:259–270

    Google Scholar 

  • Salleo S, Nardini A, Lo Gullo MA (1997) Is sclerophylly of Mediterranean evergreens an adaptation to drought? New Phytol 135:603–612

    Article  Google Scholar 

  • Savé R (1986) Ecofisiologia de les relacions hídriques de l’alzina al Montseny. PhD Thesis, Autonomous University de Barcelona, Bellatera.

    Google Scholar 

  • Savé R, Rabella R, Gascón E, Terradas J (1982) Transpiration and diffusion resistance of leaves of Quercus ilex L. at La Castanya (Montseny, Catalonia, NE Spain). USDA For Sery Gen Tech Rep PSW-58:632

    Google Scholar 

  • Savé R, Rabella R, Terradas J (1988) Effects of low temperature on Quercus ilex ssp. ilex water relations. In: Di Castri F, Floret Ch, Rambal S, Roy J (eds) Time scales and water stress. Proc 5th Int Conf on Mediterranean ecosystems. International Union of Biological Sciences, Paris, pp 1103–1105

    Google Scholar 

  • Sperry JS (1995) Limitations on stem water transport and their consequences. In: Gartner BL (ed) Plant stems. Physiology and functional morphology. Academic Press, San Diego, pp 105–124

    Google Scholar 

  • Sperry JS, Tyree MT (1990) Water-stress-induced xylem embolism in three species of conifers. Plant Cell Environ 13:427–436

    Article  Google Scholar 

  • Tenhunen J, Sala A, Harley PC, Dougherty RL, Reynolds JF (1990) Factors influencing carbon fixation and water use by Mediterranean sclerophyll shrubs during summer drought. Oecologia 82:381–393

    Article  Google Scholar 

  • Terradas J, Savé R (1992) The influence of summer and winter stress and water relationships on the distribution of Quercus ilex L. Vegetatio 99/100:137–145

    Article  Google Scholar 

  • Tranquillini W (1976) Water relations and alpine timberline. In: Lange OL, Kappen L, Schulze ED (eds) Water and plant life. Springer, Berlin, pp 473–491

    Chapter  Google Scholar 

  • Tranquillini W (1982) Frost-drought and its ecological significance. In: Lange OL, Nobel PS, Osmond CR, Ziegler H (eds) Physiological plant ecology. Encyclopaedia of plant physiology, vol 11. Springer, Berlin, pp 379–400

    Google Scholar 

  • Turner IM (1994) Sclerophylly: primarily protective? Funct Ecol 8:669–675

    Article  Google Scholar 

  • Tyree MT, Dixon MA (1986) Water stress induced cavitation and embolism in some woody plants. Physiol Plant 66:397–405

    Article  Google Scholar 

  • Tyree MT, Richter H (1981) Alternative methods of analyzing water potential isotherms: some cautions and clarifications. I. The impact on non-linearity and of some experimental errors. J Exp Bot 32:643–653

    Article  Google Scholar 

  • Tyree MT, Richter H (1982) Alternative methods of analyzing water potential isotherms: some cautions and clarifications. II. Curvilinearity in water potential isotherms. Can J Bot 60: 911–916

    Article  Google Scholar 

  • Zimmerman MH (1983) Xylem structure and the ascent of sap. Springer, Berlin

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Savé, R., Castell, C., Terradas, J. (1999). Gas Exchange and Water Relations. In: Rodà, F., Retana, J., Gracia, C.A., Bellot, J. (eds) Ecology of Mediterranean Evergreen Oak Forests. Ecological Studies, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58618-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58618-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63668-4

  • Online ISBN: 978-3-642-58618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics