Skip to main content
Log in

Carrot antifreeze protein enhances chilling tolerance in transgenic tomato

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Key message

The expression of carrot antifreeze protein enhanced chilling tolerance in heterologous host system tomato and AFP can be a potential gene candidate for producing chilling tolerant crop plants.

Abstract

In an attempt to improve chilling tolerance, the carrot gene encoding the antifreeze protein (AFP) was cloned under the control of constitutive CaMV35S promoter and genetically transformed the tomato var. PKM1 using Agrobacterium-mediated genetic transformation. Putative transgenic plants were confirmed by PCR using AFP-specific primers and grown to maturity. The integration of AFP transgene in the tomato genome was confirmed by Southern blot analysis. The AFP gene expression in transgenic plants was determined using semi-quantitative reverse transcription PCR. Upon exposure to chilling stress (4 °C), a significant decrease in membrane injury index was observed in AFP transgenic tomato lines without any phenotypic aberrations when compared with WT plants. Hence, this study clearly proves that the development of chilling tolerant tomato plants will soon become a reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AFP:

Antifreeze protein

CTAB:

Cetyl trimethyl ammonium bromide

MS:

Murashige and skoog

sq RT-PCR:

Semi-quantitative reverse transcriptase PCR

MII:

Membrane injury index

References

  • Beck EH, Fetitig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    Article  CAS  PubMed  Google Scholar 

  • Davis ME, Lineberger RD, Miller AR (1991) Effects of tomato cultivar, leaf age, and bacterial strain on transformation by Agrobacterium tumefaciens. Plant Cell Tis Org Cult 24:115–121

    Article  Google Scholar 

  • De Vries AL (1971) Glycoproteins as biological antifreeze agents in antarctic fishes. Science 172:1152–1155

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Duman JG, Olsen MT (1993) Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology 30:322–328

    Article  Google Scholar 

  • Griffith M, Ala P, Yang DS, Hon WC, Moffatt BA (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100:593–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta N, Rathore M, Goyary D, Khare N, Anandhan S, Pande V, Ahmed Z (2012) Marker-free transgenic cucumber expressing Arabidopsis CBF1 gene confers chilling stress tolerance. Biol Plant 56:57–63

    Article  CAS  Google Scholar 

  • Hays LM, Feeney RE, Crowe LM, Crowe JH, Oliver AE (1996) Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions. Proc Natl Acad Sci USA 93:6835–6840

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Duman JG (2002) Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol 48:339–350

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Bansal KC (2010) Efficient production of transgenic tomatoes via Agrobacterium-mediated transformation. Biol Plant 54:344–348

    Article  CAS  Google Scholar 

  • Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tis Org Cult 103:267–277

    Article  CAS  Google Scholar 

  • Knight CA, DeVries AL (1994) Effects of polymeric, non-equilibrium “antifreeze” upon ice growth from water. J Crys Grow 143:301–310

    Article  CAS  Google Scholar 

  • Kumar SR, Anandhan S, Dhivya S, Zakwan A, Sathishkumar R (2012) Isolation and characterization of cold inducible genes in carrot by suppression subtractive hybridization. Biol Plant 57:97–104

    Article  Google Scholar 

  • Lyu JL, Min SR, Lee JH, Lim YH, Kim JK, Bae CH, Liu JR (2012) Overexpression of a trehalose-6-phosphate synthase/phosphatise fusion gene enhances tolerance and photosynthesis during drought and salt stress without growth aberrations in tomato. Plant Cell Tis Org Cult. doi:10.1007/s11240-012-0225-7

    Google Scholar 

  • Mc Cormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (Lycopersicon esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    Article  CAS  Google Scholar 

  • Movahedi S, Sayed Tabatabaei BE, Alizade H, Ghobadi C, Yamchi A, Khaksar G (2012) Constitutive expression of Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance. Biol Plant 56:37–42

    Article  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Sakamoto A, Denoma J, Yuwansiri R, Murata N, Chen TH (2004) Genetic engineering of glycine-betaine synthesis in tomato protects seeds, plants and flowers from chilling damage. Plant J 40:474–487

    Article  CAS  PubMed  Google Scholar 

  • Raj SK, Singh R, Pandey SK, Singh BP (2005) Agrobacterium mediated tomato transformation and regeneration of transgenic lines expressing tomato leaf curl virus coat protein gene for resistance against TLCV infection. Curr Sci 88:1674–1679

    CAS  Google Scholar 

  • Roy R, Purty RS, Agrawal V, Gupta SC (2006) Transformation of tomato cultivar Pusa ruby with bspA gene from Populus tremula for drought tolerance. Plant Cell Tis Org Cult 84:55–67

    Article  CAS  Google Scholar 

  • Rubinsky B, Arav A, Fletcher GL (1991) Hypothermic protection––a fundamental property of “antifreeze” proteins. Biochem Biophys Res Comm 180:566–571

    Article  CAS  PubMed  Google Scholar 

  • Sharma MK, Solanke AU, Jani D, Singh Y, Sharma AK (2009) A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. J Biosci 34:423–433

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Rathore M, Goyary D, Singh RK, Anandhan S, Sharma DK, Ahmed Z (2011) Induced ectopic expression of At-CBF1 in marker-free transgenic tomatoes confers enhanced chilling tolerance. Plant Cell Rep. doi:10.1007/s00299-011-1007-0

    Google Scholar 

  • Smallwood M, Worrall D, Byass L, Elias L, Ashford D, Doucet CJ, Holt C, Telford J, Lillford P, Bowles DJ (1999) Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochem J 340:385–391

    Article  CAS  PubMed  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  • Tomczak MM, Hincha DK, Estrada SD, Feeney RE, Crowe JH (2001) Antifreeze proteins differentially affect model membranes during freezing. Biochim Biophys Acta 1511:255–263

    Article  CAS  PubMed  Google Scholar 

  • Tomczak MM, Hincha DK, Estrada SD, Wolkers WF, Crowe LM, Feeney RE, Tablin F, Crowe JH (2002a) A mechanism for stabilization of membranes at low temperatures by an antifreeze protein. Biophys J 82:874–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomczak MM, Vigh L, Meyer JD, Manning MC, Hincha DK, Crowe JH (2002b) Lipid unsaturation determines the interaction of AFP type I with model membranes during thermotropic phase transitions. Cryobiology 45:135–142

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Liu M, Shen X, Lu C (2005) Expression of a carrot 36 kD antifreeze protein gene improves cold stress tolerance in transgenic tobacco. For Stud China 7:11–15

    Article  Google Scholar 

  • Yarra R, He SJ, Abbagani S, Ma B, Bulle M, Zhang WK (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tis Org Cult 111:49–57

    Article  CAS  Google Scholar 

  • Zhang DQ, Liu B, Feng DR, He YM, Wang SQ, Wang HB, Wang JF (2004a) Significance of conservative asparagines in the thermal hysteresis activity of carrot antifreeze protein. Biochem J 377:589–895

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF (2004b) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39:905–915

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Peng RH, Xiong AS, Xu J, Fu XY, Zhao W, Jin XF, Meng XR, Gao JJ, Cai R, Yao QH (2012) Transformation with a gene for myo-inositol O-methyltransferase enhances the cold tolerance of Arabidopsis thaliana. Biol Plant 56:135–141

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Defence Institute of Bio-Energy Research, India for the financial support through a research grant to RS and for a fellowship support to RKS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramalingam Sathishkumar.

Additional information

Communicated by P. Sowinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajeev Kumar, S., Kiruba, R., Balamurugan, S. et al. Carrot antifreeze protein enhances chilling tolerance in transgenic tomato. Acta Physiol Plant 36, 21–27 (2014). https://doi.org/10.1007/s11738-013-1383-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1383-x

Keywords

Navigation