Skip to main content
Log in

Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Nitrogen-doped carbon-coated hollow SnS2/NiS (SnS2/NiS@N-C) microflowers were obtained using NiSn(OH)6 nanospheres as the template via a solvent-thermal method followed by the polydopamine coating and carbonization process. When served as an anode material for lithium-ion batteries, such hollow SnS2/NiS@N-C microflowers exhibited a capacity of 403.5 mAh·g−1 at 2.0 A·g−1 over 200 cycles and good rate performance. The electrochemical reaction kinetics of this anode was analyzed, and the morphologies and structures of anode materials after the cycling test were characterized. The high stability and good rate performance were mainly due to bimetallic synergy, hollow micro/nanostructure, and nitrogen-doped carbon layers. The revealed excellent electrochemical energy storage properties of hollow SnS2/NiS@N-C microflowers in this study highlight their potential as the anode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding Y, Cai P, Wen Z. Electrochemical neutralization energy: from concept to devices. Chemical Society Reviews, 2021, 503: 1495–1511

    Article  CAS  Google Scholar 

  2. Pang Z Y, Zhang H Z, Wang L, et al. Towards safe lithium–sulfur batteries from liquid-state electrolyte to solid-state electrolyte. Frontiers of Materials Science, 2023, 171: 230630

    Article  Google Scholar 

  3. Ma Z Y, Wang Q B, Wang Y H, et al. High lithium storage performance of Ni0.5Fe0.5O1xNx thin film with NiO-type crystal structure. Frontiers of Materials Science, 2022, 164: 220624

    Article  Google Scholar 

  4. Zhou Y Y, Zhang Z Y, Zhang H Z, et al. Progress and perspective of vanadium-based cathode materials for lithium ion batteries. Tungsten, 2021, 33: 279–288

    Article  Google Scholar 

  5. Inamdar A I, Hou B, Chavan H S, et al. Copper cobalt tin sulphide (Cu2CoSnS4) anodes synthesised using a chemical route for stable and efficient rechargeable lithium-ion batteries. Dalton Transactions, 2022, 5138: 14535–14544

    Article  CAS  Google Scholar 

  6. Wei X J, Zhang Y B, Zhang B K, et al. Yolk–shell-structured zinc–cobalt binary metal sulfide @ N-doped carbon for enhanced lithium-ion storage. Nano Energy, 2019, 64: 103899

    Article  CAS  Google Scholar 

  7. Yang X X, He C J, Hou Y L, et al. In-situ growth engineering of nano-sheets SnS2 on S-doped reduced graphene oxide for high lithium/sodium storage capacity. Journal of Electroanalytical Chemistry, 2022, 904: 115947

    Article  CAS  Google Scholar 

  8. Dong X, Deng Z P, Huo L H, et al. Large-scale synthesis of NiS@N and S co-doped carbon mesoporous tubule as high performance anode for lithium-ion battery. Journal of Alloys and Compounds, 2019, 788: 984–992

    Article  CAS  Google Scholar 

  9. Yu L Q, Zhao S X, Wu Q L, et al. Strengthening the interface between flower-like VS4 and porous carbon for improving its lithium storage performance. Advanced Functional Materials, 2020, 3016: 2000427

    Article  CAS  Google Scholar 

  10. Zhao Z J, Chao Y G, Wang F, et al. Intimately coupled WS2 nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage. Rare Metals, 2022, 414: 1245–1254

    Article  CAS  Google Scholar 

  11. Zhang S P, Wang G, Wang B B, et al. 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage. Advanced Functional Materials, 2020, 3024: 2001592

    Article  CAS  Google Scholar 

  12. Fang Y, Luan D, Gao S, et al. Rational design and engineering of one-dimensional hollow nanostructures for efficient electrochemical energy storage. Angewandte Chemie International Edition, 2021, 6037: 20102–20118

    Article  CAS  Google Scholar 

  13. Zhang Y, Wang P X, Yin Y Y, et al. Carbon coated amorphous bimetallic sulfide hollow nanocubes towards advanced sodium ion battery anode. Carbon, 2019, 150: 378–387

    Article  CAS  Google Scholar 

  14. Lin Y M, Qiu Z Z, Li D Z, et al. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Materials, 2018, 11: 67–74

    Article  Google Scholar 

  15. Fang G Z, Wu Z X, Zhou J, et al. Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Advanced Energy Materials, 2018, 819: 1703155

    Article  Google Scholar 

  16. Wen Z Y, Gu C P, Yin Y J, et al. Ultra-thin N-doped carbon coated SnO2 nanotubes as anode material for high performance lithium-ion batteries. Applied Surface Science, 2021, 568: 150969

    Article  CAS  Google Scholar 

  17. Liu H, Lei W, Tong Z, et al. Enhanced diffusion kinetics of Li ions in double-shell hollow carbon fibers. ACS Applied Materials & Interfaces, 2021, 1321: 24604–24614

    Article  CAS  Google Scholar 

  18. Xue L, Li Y, Lin W, et al. Electrochemical properties and facile preparation of hollow porous V2O5 microspheres for lithium-ion batteries. Journal of Colloid and Interface Science, 2023, 638: 231–241

    Article  CAS  Google Scholar 

  19. Huang J R, Dai Q S, Wu Q A, et al. Preparation of hollow SnO2@N-C nanospheres for high performance lithium-ion battery. Journal of Electroanalytical Chemistry, 2022, 922: 116741

    Article  CAS  Google Scholar 

  20. Zhang W L, Huang Z Y, Zhou H H, et al. Facile synthesis of ZnS nanoparticles decorated on defective CNTs with excellent performances for lithium-ion batteries anode material. Journal of Alloys and Compounds, 2020, 816: 152633

    Article  CAS  Google Scholar 

  21. Han X Y, Zhao D L, Meng W J, et al. Hollow tremella-like graphene sphere/SnO2 composite for high performance Li-ion battery anodes. Ceramics International, 2019, 4513: 16244–16250

    Article  CAS  Google Scholar 

  22. Li W, Huang B, Liu Z, et al. NiS2 wrapped into graphene with strong Ni-O interaction for advanced sodium and potassium ion batteries. Electrochimica Acta, 2021, 369: 137704

    Article  CAS  Google Scholar 

  23. Ji Y L, Lu X M, Luo F Y, et al. Improved SnO2/C composite anode enabled by well-designed heterogeneous nanospheres decoration. Chemical Physics Letters, 2021, 763: 138242

    Article  CAS  Google Scholar 

  24. Chen F M, Chen Z L, Dai Z Y, et al. Self-templating synthesis of carbon-encapsulated SnO2 hollow spheres: a promising anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 816: 152495

    Article  CAS  Google Scholar 

  25. Guan S, Wang T, Fu X, et al. Coherent SnS2/NiS2 hetero-nanosheet arrays with fast charge transfer for enhanced sodium-ion storage. Applied Surface Science, 2020, 508: 145241

    Article  CAS  Google Scholar 

  26. Khan N A, Rashid N, Junaid M, et al. NiO/NiS heterostructures: an efficient and stable electrocatalyst for oxygen evolution reaction. ACS Applied Energy Materials, 2019, 25: 3587–3594

    Article  CAS  Google Scholar 

  27. Xue L C, Chen F M, Zhang Z B, et al. Fast charge transfer kinetics enabled by carbon-coated, heterostructured SnO2/SnSx arrays for robust, flexible lithium-ion batteries. Chem Electro Chem, 2022, 9(2): e202101327

    CAS  Google Scholar 

  28. Xue L, Li Y, Lin W, et al. Electrochemical properties and facile preparation of hollow porous V2O5 microspheres for lithium-ion batteries. Journal of Colloid and Interface Science, 2023, 638: 231–241

    Article  CAS  Google Scholar 

  29. Wang C P, Zhang Y Y, Li Y S, et al. Construction of uniform SnS2/ZnS heterostructure nanosheets embedded in graphene for advanced lithium-ion batteries. Journal of Alloys and Compounds, 2020, 820: 153147

    Article  CAS  Google Scholar 

  30. Zhang R, Lu C X, Shi Z L, et al. Hexagonal phase NiS octahedrons co-modified by 0D-, 1D-, and 2D carbon materials for high performance supercapacitor. Electrochimica Acta, 2019, 311: 83–91

    Article  Google Scholar 

  31. Wang X, Li X, Li Q, et al. Improved electrochemical performance based on nanostructured SnS2@CoS2-rGO composite anode for sodium-ion batteries. Nano-Micro Letters, 2018, 103: 46

    Article  Google Scholar 

  32. Zhang D L, Mou H Y, Lu F, et al. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2019, 254: 471–478

    Article  CAS  Google Scholar 

  33. Li W L, Chen Z, Hou J M, et al. SnO2 nano-crystals anchored on N-doped porous carbon with enhanced lithium storage properties. Applied Surface Science, 2020, 515: 145902

    Article  CAS  Google Scholar 

  34. Xiang M, Li J, Feng S, et al. Synergistic capture and conversion of polysulfides in cathode composites with multidimensional framework structures. Journal of Colloid and Interface Science, 2022, 624: 471–481

    Article  CAS  Google Scholar 

  35. Li J J, Li X Y, Fan X, et al. Holey graphene anchoring of the monodispersed nano-sulfur with covalently-grafted polyaniline for lithium sulfur batteries. Carbon, 2022, 188: 155–165

    Article  CAS  Google Scholar 

  36. Ren Y J, Zhang G Q, Huo J H, et al. Flower-like TiO2 hollow microspheres with mixed-phases for high-pseudocapacitive lithium storage. Journal of Alloys and Compounds, 2022, 902: 163730

    Article  CAS  Google Scholar 

  37. Feng S Q, Wang J F, Gao N S, et al. Heterogeneous interface of Ni-Mn composite Prussian blue analog-coated structure modulates the adsorption and conversion of polysulfides in lithium–sulfur batteries. Electrochimica Acta, 2022, 433: 141218

    Article  CAS  Google Scholar 

  38. Deepalakshmi T, Nguyen T T, Kim N H, et al. Rational design of ultrathin 2D tin nickel selenide nanosheets for high-performance flexible supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 742: 24462–24476

    Article  CAS  Google Scholar 

  39. Dai H H, Zhao Y, Zhang Z, et al. Ostwald ripening and sulfur escaping enabled chrysanthemum-like architectures composed of NiS2/NiS@C heterostructured petals with enhanced charge storage capacity and rate capability. Journal of Electroanalytical Chemistry, 2022, 921: 116671

    Article  CAS  Google Scholar 

  40. Yu X L, Chen C M, Li R X, et al. Construction of SnS2@MoS2@rGO heterojunction anode and their half/full sodium ion storage performances. Journal of Alloys and Compounds, 2022, 896: 162784

    Article  CAS  Google Scholar 

  41. Li S, Zhao Z, Li C, et al. SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries. Nano-Micro Letters, 2019, 111: 14

    Article  CAS  Google Scholar 

  42. Zhang L S, Huang Y P, Zhang Y F, et al. Flexible electrospun carbon nanofiber@NiS core/sheath hybrid membranes as binder-free anodes for highly reversible lithium storage. Advanced Materials Interfaces, 2016, 32: 1500467–1500476

    Article  Google Scholar 

  43. Huang S J, Li H P, Xu G B, et al. Porous N-doped carbon sheets wrapped MnO in 3D carbon networks as high-performance anode for Li-ion batteries. Electrochimica Acta, 2020, 342: 136115

    Article  CAS  Google Scholar 

  44. Xiang M, Zhang H Y, Feng S Q, et al. Nitrogen-doped carbon–cobalt-modified MnO nanowires as cathodes for high-performance lithium sulfur batteries. Journal of Electroanalytical Chemistry, 2021, 900: 115721

    Article  CAS  Google Scholar 

  45. Pei Y R, Zhao M, Zhu Y P, et al. VN nanoparticle-assembled hollow microspheres/N-doped carbon nanofibers: an anode material for superior potassium storage. Nano Materials Science, 2022, 42: 104–112

    Article  CAS  Google Scholar 

  46. Han D D, Xiao N R, Liu B, et al. One-pot synthesis of core/shell structured NiS@onion-like carbon nanocapsule as a highperformance anode material for lithium-ion batteries. Materials Letters, 2017, 196: 119–122

    Article  CAS  Google Scholar 

  47. Li H, He Y Y, Dai Y X, et al. Bimetallic SnS2/NiS2@S-rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries. Chemical Engineering Journal, 2022, 427: 131784

    Article  CAS  Google Scholar 

  48. Ou X, Cao L, Liang X, et al. Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability. ACS Nano, 2019, 133: 3666–3676

    Article  CAS  Google Scholar 

  49. Miao Y, Zhao X, Wang X, et al. Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries. Nano Research, 2020, 1311: 3041–3047

    Article  CAS  Google Scholar 

  50. Jia Z Q, Cui Z H, Tan Y B, et al. Bimetal-organic frameworks derived ternary metal sulphide nanoparticles embedded in porous carbon spheres/carbon nanotubes as high-performance lithium storage materials. Chemical Engineering Journal, 2019, 370: 89–97

    Article  CAS  Google Scholar 

  51. Su L W, Zhou Z, Qin X, et al. CoCO3 submicrocube/graphene composites with high lithium storage capability. Nano Energy, 2013, 22: 276–282

    Article  CAS  Google Scholar 

  52. Yin L, Cheng R, Song Q, et al. Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets composite as highly efficient anode for lithium ion batteries. Electrochimica Acta, 2019, 293: 408–418

    Article  CAS  Google Scholar 

  53. Deng W, Chen X, Liu Z, et al. Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries. Journal of Power Sources, 2015, 277: 131–138

    Article  CAS  Google Scholar 

  54. Liu S, Zhang X, Yan P, et al. Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium ion batteries. ACS Nano, 2019, 138: 8854–8864

    Article  CAS  Google Scholar 

  55. Pan Q, Xie J, Liu S Y, et al. Facile one-pot synthesis of ultrathin NiS nanosheets anchored on graphene and the improved electrochemical Li-storage properties. RSC Advances, 2013, 312: 3899–3906

    Article  CAS  Google Scholar 

  56. Li J, Xu X, Yu X, et al. Monodisperse CoSn and NiSn nanoparticles supported on commercial carbon as anode for lithium- and potassium-ion batteries. ACS Applied Materials & Interfaces, 2020, 124: 4414–4422

    Article  CAS  Google Scholar 

  57. Peng H, Li R, Hu J, et al. Core–shell Sn-Ni-Cu-alloy@carbon nanorods to array as three-dimensional anode by nano electrodeposition for high-performance lithium ion batteries. ACS Applied Materials & Interfaces, 2016, 819: 12221–12227

    Article  CAS  Google Scholar 

  58. Nguyen T L, Kim D S, Hur J, et al. Ni-Sn-based hybrid composite anodes for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 278: 25–32

    Article  CAS  Google Scholar 

  59. Zhang Y, Wang P, Yin Y, et al. Heterostructured SnS-ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries. Chemical Engineering Journal, 2019, 356: 1042–1051

    Article  CAS  Google Scholar 

  60. Xu C X, Manukyan K V, Adams R A, et al. One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life Li-ion batteries. Carbon, 2019, 142: 51–59

    Article  CAS  Google Scholar 

  61. Ding Y, Wang W W, Bi M F, et al. CoTe nanorods/rGO composites as a potential anode material for sodium-ion storage. Electrochimica Acta, 2019, 313: 331–340

    Article  CAS  Google Scholar 

  62. Cao B K, Liu Z Q, Xu C Y, et al. High-rate-induced capacity evolution of mesoporous C@SnO2@C hollow nanospheres for ultra-long cycle lithium-ion batteries. Journal of Power Sources, 2019, 414: 233–241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Research Foundation of Korea (Grant No. NRF-2019R1A5A8080290) and the University Synergy Innovation Program of Anhui Province (GXXT-2020-073 and GXXT-2020-074).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiandong Zheng, Sang Woo Joo or Jiarui Huang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zheng, J., Gao, L. et al. Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage. Front. Mater. Sci. 17, 230654 (2023). https://doi.org/10.1007/s11706-023-0654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0654-8

Keywords

Navigation