Skip to main content
Log in

Phosphorene: Current status, challenges and opportunities

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The field of 2-dimensional (2D) materials has witnessed a sharp growth since its inception and can majorly be attributed to the substantial technical and scientific developments, leading to significant improvements in their syntheses, characterization and applications. In the list of 2D materials, the relatively newer addition is phosphorene, which ideally consists of a single layer of black phosphorous. Keeping in mind the past, and ongoing research activities, this short account offers a brief overview of the present status and the associated challenges in the field of phosphorene-related research, with special emphasis on their syntheses, properties, applications and future opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhanvase B A, Pawade V B. Chapter 15: Advanced nanomaterials for green energy: Current status and future perspectives. In: Nanomaterials for Green Energy. Amsterdam: Elsevier, 2018, 457–472

    Chapter  Google Scholar 

  2. Child M, Koskinen O, Linnanen L, Breyer C. Sustainability guardrails for energy scenarios of the global energy transition. Renewable & Sustainable Energy Reviews, 2018, 91: 321–334

    Article  Google Scholar 

  3. Feynman R P. There’s plenty of room at the bottom. Journal of Microelectromechanical Systems, 1992, 1(1): 60–66

    Article  Google Scholar 

  4. Feynman R. Infinitesimal machinery. Journal of Microelectromechanical Systems, 1993, 2(1): 4–14

    Article  Google Scholar 

  5. Drexler K E. Nanotechnology: From feynman to funding. Bulletin of Science, Technology & Society, 2004, 24(1): 21–27

    Article  Google Scholar 

  6. Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F. 2D materials: To graphene and beyond. Nanoscale, 2011, 3(1): 20–30

    Article  CAS  PubMed  Google Scholar 

  7. Chhowalla M, Liu Z, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chemical Society Reviews, 2015, 44(9): 2584–2586

    Article  CAS  PubMed  Google Scholar 

  8. Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, et al. Recent advances in twodimensional materials beyond graphene. ACS Nano, 2015, 9(12): 11509–11539

    Article  CAS  PubMed  Google Scholar 

  9. Yang Z, Hao J. Recent progress in black phosphorusbased heterostructures for device applications. Small Methods, 2017, 2 (2): 1700296

    Article  CAS  Google Scholar 

  10. Bridgman P W. Two new modifications of phosphorus. Journal of the American Chemical Society, 1914, 36(7): 1344–1363

    Article  CAS  Google Scholar 

  11. Park C M, Sohn H J. Black phosphorus and its composite for lithium rechargeable batteries. Advanced Materials, 2007, 19(18): 2465–2468

    Article  CAS  Google Scholar 

  12. Khandelwal A, Mani K, Karigerasi M H, Lahiri I. Phosphorene— the two-dimensional black phosphorous: Properties, synthesis and applications. Materials Science and Engineering B, 2017, 221: 17–34

    Article  CAS  Google Scholar 

  13. Akhtar M, Anderson G, Zhao R, Alruqi A, Mroczkowska J E, Sumanasekera G, Jasinski J B. Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Materials and Applications, 2017, 1(1): 5

    Article  Google Scholar 

  14. Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033–4041

    Article  CAS  PubMed  Google Scholar 

  15. Jain A, McGaughey A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Scientific Reports, 2015, 5(1): 8501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu M, Fu H, Zhou L, Yao K, Zeng X C. Nine new phosphorene polymorphs with non-honeycomb structures: A much extended family. Nano Letters, 2015, 15(5): 3557–3562

    Article  CAS  PubMed  Google Scholar 

  17. Brown A, Rundqvist S. Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 1965, 19(4): 684–685

    Article  CAS  Google Scholar 

  18. Rodin A S, Carvalho A, Castro N A H. Strain-induced gap modification in black phosphorus. Physical Review Letters, 2014, 112(17): 176801

    Article  CAS  PubMed  Google Scholar 

  19. Appalakondaiah S, Vaitheeswaran G, Lebègue S, Christensen N E, Svane A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Physical Review. B, 2012, 86(3): 035105

    Google Scholar 

  20. Pang J, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L, Mendes Rafael G, Gemming T, Liu Z, Rummeli M H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Advanced Energy Materials, 2017, 8(8): 1702093

    Article  CAS  Google Scholar 

  21. Wu R J, Topsakal M, Low T, Robbins M C, Haratipour N, Jeong J S, Wentzcovitch R M, Koester S J, Mkhoyan K A. Atomic and electronic structure of exfoliated black phosphorus. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2015, 33(6): 060604

    Article  CAS  Google Scholar 

  22. Feng X, Binghui G, Jing C, Arokia N, Linhuo L X, Hongyu M, Huihua M, Chongyang Z, Weiwei X, Zhengrui L, et al. Scalable shear-exfoliation of high-quality phosphorene nanoflakes with reliable electrochemical cycleability in nano batteries. 2D Materials, 2016, 3(2): 025005

    Article  CAS  Google Scholar 

  23. Gan Z X, Sun L L, Wu X L, Meng M, Shen J C, Chu P K. Tunable photoluminescence from sheet-like black phosphorus crystal by electrochemical oxidation. Applied Physics Letters, 2015, 107(2): 021901

    Article  CAS  Google Scholar 

  24. Sun Z, Xie H, Tang S, Yu X F, Guo Z, Shao J, Zhang H, Huang H, Wang H, Chu P K. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angewandte Chemie International Edition, 2015, 54(39): 11526–11530

    Article  CAS  PubMed  Google Scholar 

  25. Kang J S, Ke M, Hu Y. Ionic intercalation in two-dimensional van der waals materials: In situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Letters, 2017, 17(3): 1431–1438

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Kim J, Jin C, Ye G J, Qiu D Y, da Jornada F H, Shi Z, Chen L, Zhang Z, et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nature Nanotechnology, 2016, 12(1): 21–25

    Article  CAS  PubMed  Google Scholar 

  27. Favron A, Gaufrès E, Fossard F, Phaneuf-L’Heureux A L, Tang N YW, Lévesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nature Materials, 2015, 14(8): 826–832

    Article  CAS  PubMed  Google Scholar 

  28. Ling X, Wang H, Huang S, Xia F, Dresselhaus M S. The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (15): 4523–4530

    Google Scholar 

  29. Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401

    Article  CAS  PubMed  Google Scholar 

  30. Rudenko A N, Yuan S, Katsnelson M I. Toward a realistic description of multilayer black phosphorus: From GW approximation to large-scale tight-binding simulations. Physical Review. B, 2015, 92(8): 085419

    Google Scholar 

  31. Qiao J, Kong X, Hu Z X, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5(1): 4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wiktor J, Pasquarello A. Absolute deformation potentials of twodimensional materials. Physical Review. B, 2016, 94(24): 245411

    Google Scholar 

  33. Nguyen C V, Ngoc H N, Duque C A, Quoc K D, Van H N, Van T L, Vinh P H. Linear and nonlinear magneto-optical properties of monolayer phosphorene. Journal of Applied Physics, 2017, 121(4): 045107

    Article  CAS  Google Scholar 

  34. Çakir D, Sahin H, Peeters FM. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Physical Review. B, 2014, 90(20): 205421

    Google Scholar 

  35. Yasaei P, Kumar B, Foroozan T, Wang C, Asadi M, Tuschel D, Indacochea J E, Klie R F, Salehi-Khojin A. Highquality black phosphorus atomic layers by liquid-phase exfoliation. Advanced Materials, 2015, 27(11): 1887–1892

    Article  CAS  PubMed  Google Scholar 

  36. Rahman M Z, Kwong C W, Davey K, Qiao S Z. 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications. Energy & Environmental Science, 2016, 9(3): 709–728

    Article  CAS  Google Scholar 

  37. Wu J, Mao N, Xie L, Xu H, Zhang J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized raman spectroscopy. Angewandte Chemie International Edition, 2015, 54(8): 2366–2369

    Article  CAS  PubMed  Google Scholar 

  38. Low T, Rodin A S, Carvalho A, Jiang Y, Wang H, Xia F, Castro N A H. Tunable optical properties of multilayer black phosphorus thin films. Physical Review. B, 2014, 90(7): 075434

    Google Scholar 

  39. Corbrjdge D E C. Infrared analysis of phosphorus compounds. Journal of Applied Chemistry (London), 1956, 6(10): 456–465

    Article  Google Scholar 

  40. Corbridge D E C, Lowe E J. The infra-red spectra of some inorganic phosphorus compounds. Journal of the Chemical Society (Resumed), 1954: 493–502

    Google Scholar 

  41. Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5(1): 4458

    Article  CAS  PubMed  Google Scholar 

  42. Chen S, Wang L, Wu Q, Li X, Zhao Y, Lai H, Yang L, Sun T, Li Y, Wang X, Hu Z. Advanced non-precious electrocatalyst of the mixed valence CoOx nanocrystals supported on N-doped carbon nanocages for oxygen reduction. Science China. Chemistry, 2015, 58(1): 180–186

    CAS  Google Scholar 

  43. Late D J. Temperature dependent phonon shifts in few-layer black phosphorus. ACS Applied Materials & Interfaces, 2015, 7(10): 5857–5862

    Article  CAS  Google Scholar 

  44. Andres C-G, Leonardo V, Elsa P, Joshua O I, Narasimha-Acharya K L, Sofya I B, Dirk J G, Michele B, Gary A S, Alvarez J V, et al. Isolation and characterization of few-layer black phosphorus. 2D Materials, 2014, 1(2): 025001

    Article  CAS  Google Scholar 

  45. Terrones H, Corro E D, Feng S, Poumirol J M, Rhodes D, Smirnov D, Pradhan N R, Lin Z, Nguyen M A T, Elías A L, et al. New first order raman-active modes in few layered transition metal dichalcogenides. Scientific Reports, 2014, 4(1): 4215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo X, Lu X, Cong C, Yu T, Xiong Q, Ying Q S. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials—A general bond polarizability model. Scientific Reports, 2015, 5(1): 14565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311–1314

    Article  CAS  PubMed  Google Scholar 

  48. Dai S, Fei Z, Ma Q, Rodin A S, Wagner M, McLeod A S, LiuMK, Gannett W, Regan W, Watanabe K, et al. Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride. Science, 2014, 343(6175): 1125–1129

    Article  CAS  PubMed  Google Scholar 

  49. Dong S, Zhang A, Liu K, Ji J, Ye Y G, Luo X G, Chen X H, Ma X, Jie Y, Chen C, et al. Ultralow-frequency collective compression mode and strong interlayer coupling in multilayer black phosphorus. Physical Review Letters, 2016, 116(8): 087401

    Article  CAS  PubMed  Google Scholar 

  50. Ling X, Liang L, Huang S, Puretzky A A, Geohegan D B, Sumpter B G, Kong J, Meunier V, Dresselhaus M S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Letters, 2015, 15(6): 4080–4088

    Article  CAS  PubMed  Google Scholar 

  51. Luo X, Lu X, Koon G K W, Castro N A H, Özyilmaz B, Xiong Q, Quek S Y. Large frequency change with thickness in interlayer breathing mode—significant interlayer interactions in few layer black phosphorus. Nano Letters, 2015, 15(6): 3931–3938

    Article  CAS  PubMed  Google Scholar 

  52. Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Letters, 2014, 14(12): 6964–6970

    Article  CAS  PubMed  Google Scholar 

  53. Doganov R A, O’Farrell E C T, Koenig S P, Yeo Y, Ziletti A, Carvalho A, Campbell D K, Coker D F, Watanabe K, Taniguchi T, et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nature Communications, 2015, 6(1): 6647

    Article  CAS  PubMed  Google Scholar 

  54. Köpf M, Eckstein N, Pfister D, Grotz C, Krüger I, Greiwe M, Hansen T, Kohlmann H, Nilges T. Access and in situ growth of phosphorene-precursor black phosphorus. Journal of Crystal Growth, 2014, 405: 6–10

    Article  CAS  Google Scholar 

  55. Lange S, Schmidt P, Au Nilges T. Sn3P7@black phosphorus: An easy access to black phosphorus. Inorganic Chemistry, 2007, 46 (10): 4028–4035

    Article  CAS  PubMed  Google Scholar 

  56. Nilges T, Kersting M, Pfeifer T. A fast low-pressure transport route to large black phosphorus single crystals. Journal of Solid State Chemistry, 2008, 181(8): 1707–1711

    Article  CAS  Google Scholar 

  57. Kou L, Chen C, Smith S C. Phosphorene: Fabrication, properties, and applications. Journal of Physical Chemistry Letters, 2015, 6 (14): 2794–2805

    Article  CAS  PubMed  Google Scholar 

  58. Avouris P, Dimitrakopoulos C. Graphene: Synthesis and applications. Materials Today, 2012, 15(3): 86–97

    Article  CAS  Google Scholar 

  59. Tian B, Tian B, Smith B, Scott M C, Lei Q, Hua R, Tian Y, Liu Y. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proceedings of the National Academy of Sciences, 2018, 115(17): 201800069

    Article  CAS  Google Scholar 

  60. Zhang Y, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berrys phase in graphene. Nature, 2005, 438(7065): 201–204

    Article  CAS  PubMed  Google Scholar 

  61. Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(22): 11700–11715

    CAS  Google Scholar 

  62. Li H, Wu J, Yin Z, Zhang H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 Nanosheets. Accounts of Chemical Research, 2014, 47(4): 1067–1075

    Article  CAS  PubMed  Google Scholar 

  63. Zhang K, Feng Y, Wang F, Yang Z, Wang J. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(46): 11992–12022

    Article  CAS  Google Scholar 

  64. Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y. Black phosphorus field-effect transistors. Nature Nanotechnology, 2014, 9(5): 372–377

    Article  CAS  PubMed  Google Scholar 

  65. Kang J, Wood J D, Wells S A, Lee J H, Liu X, Chen K S, Hersam M C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano, 2015, 9(4): 3596–3604

    Article  PubMed  Google Scholar 

  66. Chen L, Zhou G, Liu Z, Ma X, Chen J, Zhang Z, Ma X, Li F, Cheng H M, Ren W. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Advanced Materials, 2015, 28(3): 510–517

    Article  CAS  PubMed  Google Scholar 

  67. Joensen P, Frindt R F, Morrison S R. Single-layer MoS2. Materials Research Bulletin, 1986, 21(4): 457–461

    Article  CAS  Google Scholar 

  68. Guo G C, Wang D, Wei X L, Zhang Q, Liu H, Lau W M, Liu L M. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. Journal of Physical Chemistry Letters, 2015, 6(24): 5002–5008

    Article  CAS  PubMed  Google Scholar 

  69. Kim Y, Park Y, Choi A, Choi N S, Kim J, Lee J, Ryu J H, Oh S M, Lee K T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Advanced Materials, 2013, 25(22): 3045–3049

    Article  CAS  PubMed  Google Scholar 

  70. Kang J, Wells S A, Wood J D, Lee J H, Liu X, Ryder C R, Zhu J, Guest J R, Husko C A, HersamMC. Stable aqueous dispersions of optically and electronically active phosphorene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11688–11693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nature Communications, 2014, 5(1): 5678

    Article  CAS  PubMed  Google Scholar 

  72. Bozso F, Avouris P. Adsorption of phosphorus on Si(111): Structure and chemical reactivity. Physical Review. B, 1991, 43 (2): 1847–1850

    Google Scholar 

  73. Niu T. New properties with old materials: Layered black phosphorous. Nano Today, 2017, 12: 7–9

    Article  CAS  Google Scholar 

  74. Zeng J, Cui P, Zhang Z. Half layer by half layer growth of a blue phosphorene monolayer on a gan(001) substrate. Physical Review Letters, 2017, 118(4): 046101

    Article  PubMed  Google Scholar 

  75. Liu X, Wood J D, Chen K S, Cho E, Hersam M C. In situ thermal decomposition of exfoliated two-dimensional black phosphorus. Journal of Physical Chemistry Letters, 2015, 6(5): 773–778

    Article  CAS  PubMed  Google Scholar 

  76. Piro N A, Figueroa J S, McKellar J T, Cummins C C. Triple-bond reactivity of diphosphorus molecules. Science, 2006, 313(5791): 1276–1279

    Article  CAS  PubMed  Google Scholar 

  77. Presel F, Tache C A, Tetlow H, Curcio D, Lacovig P, Kantorovich L, Lizzit S, Baraldi A. Spectroscopic fingerprints of carbon monomers and dimers on ir(111): Experiment and theory. Journal of Physical Chemistry C, 2017, 121(21): 11335–11345

    Article  CAS  Google Scholar 

  78. Xu L, Jin Y, Wu Z, Yuan Q, Jiang Z, Ma Y, Huang W. Transformation of carbon monomers and dimers to graphene islands on co(0001): Thermodynamics and kinetics. Journal of Physical Chemistry C, 2013, 117(6): 2952–2958

    Article  CAS  Google Scholar 

  79. Ziletti A, Carvalho A, Campbell D K, Coker D F, Castro N A H. Oxygen defects in phosphorene. Physical Review Letters, 2015, 114(4): 046801

    Article  CAS  PubMed  Google Scholar 

  80. Cai Y, Zhang G, Zhang Y W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. Journal of Physical Chemistry C, 2015, 119(24): 13929–13936

    Article  CAS  Google Scholar 

  81. Whittingham M S. Lithium batteries and cathode materials. Chemical Reviews, 2004, 104(10): 4271–4302

    Article  CAS  PubMed  Google Scholar 

  82. Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 2013, 135 (4): 1167–1176

    Article  CAS  PubMed  Google Scholar 

  83. Jiang J, Dahn J R. Effects of solvents and salts on the thermal stability of LiC6. Electrochimica Acta, 2004, 49(26): 4599–4604

    Article  CAS  Google Scholar 

  84. Li W, Yang Y, Zhang G, Zhang Y W. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithiumion battery. Nano Letters, 2015, 15(3): 1691–1697

    Article  CAS  PubMed  Google Scholar 

  85. Sun J, Zheng G, Lee HW, Liu N, Wang H, Yao H, Yang W, Cui Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Letters, 2014, 14(8): 4573–4580

    Article  CAS  PubMed  Google Scholar 

  86. Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries. Chemical Reviews, 2014, 114(23): 11751–11787

    Article  CAS  PubMed  Google Scholar 

  87. Peng H J, Huang J Q, Cheng X B, Zhang Q. Lithium-sulfur batteries: Review on high loading and high energy lithium-sulfur batteries. Advanced Energy Materials, 2017, 7(24): 1770141

    Article  CAS  Google Scholar 

  88. Fan X, Sun W, Meng F, Xing A, Liu J. Advanced chemical strategies for lithium-sulfur batteries: A review. Green Energy & Environment, 2018, 3(1): 2–19

    Article  Google Scholar 

  89. Kang W, Deng N, Ju J, Li Q, Wu D, Ma X, Li L, Naebe M, Cheng B. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale, 2016, 8(37): 16541–16588

    Article  CAS  PubMed  Google Scholar 

  90. Zhou G, Pei S, Li L, Wang DW, Wang S, Huang K, Yin L C, Li F, Cheng H M. A Graphene-pure sulfur sandwich structure for ultrafast, long life lithium-sulfur batteries. Advanced Materials, 2013, 26(4): 625–631

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Y, Wang H, Luo Z, Tan H T, Li B, Sun S, Li Z, Zong Y, Xu Z, Yang Y, Khor K A, Yan Q. Lithium storage: An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Advanced Energy Materials, 2016, 6(12): 1600453

    Article  CAS  Google Scholar 

  92. Zhao J, Yang Y, Katiyar R S, Chen Z. Phosphorene as a promising anchoring material for lithium-sulfur batteries: A computational study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(16): 6124–6130

    CAS  Google Scholar 

  93. Sun J, Sun Y, Pasta M, Zhou G, Li Y, Liu W, Xiong F, Cui Y. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Advanced Materials, 2016, 28(44): 9797–9803

    Article  CAS  PubMed  Google Scholar 

  94. Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: Present and future. Chemical Society Reviews, 2017, 46(12): 3529–3614

    Article  CAS  PubMed  Google Scholar 

  95. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nature Reviews. Materials, 2018, 3(4): 18013

    Google Scholar 

  96. Sun J, Lee HW, Pasta M, Yuan H, Zheng G, Sun Y, Li Y, Cui Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nature Nanotechnology, 2015, 10(11): 980–985

    Article  CAS  PubMed  Google Scholar 

  97. Zhang W, Mao J, Li S, Chen Z, Guo Z. Phosphorus-based alloy materials for advanced potassium-ion battery anode. Journal of the American Chemical Society, 2017, 139(9): 3316–3319

    Article  CAS  PubMed  Google Scholar 

  98. Ren X, Lian P, Xie D, Yang Y, Mei Y, Huang X, Wang Z, Yin X. Properties, preparation and application of black phosphorus/ phosphorene for energy storage: A review. Journal of Materials Science, 2017, 52(17): 10364–10386

    Article  CAS  Google Scholar 

  99. Wang X, Chen Y, Schmidt O G, Yan C. Engineered nanomembranes for smart energy storage devices. Chemical Society Reviews, 2016, 45(5): 1308–1330

    Article  CAS  PubMed  Google Scholar 

  100. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854

    Article  CAS  PubMed  Google Scholar 

  101. Wu Z S, Parvez K, Feng X, Müllen K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4(1): 2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen X, Xu G, Ren X, Li Z, Qi X, Huang K, Zhang H, Huang Z, Zhong J. A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(14): 6581–6588

    CAS  Google Scholar 

  103. Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies. Renewable & Sustainable Energy Reviews, 2011, 15 (3): 1625–1636

    Google Scholar 

  104. Roige A, Ossó J O, Martín I, Voz C, Ortega P, López-González J M, Alcubilla R, Vega L F. Microscale characterization of surface recombination at the vicinity of laser-processed regions in c-Si solar cells. IEEE Journal of Photovoltaics, 2016, 6(2): 426–431

    Article  Google Scholar 

  105. Chen Y J, Zhang M J, Yuan S, Qiu Y, Wang X B, Jiang X, Gao Z, Lin Y, Pan F. Insight into interfaces and junction of polycrystalline silicon solar cells by kelvin probe force microscopy. Nano Energy, 2017, 36: 303–312

    Article  CAS  Google Scholar 

  106. Abdulrazzaq O A, Saini V, Bourdo S, Dervishi E, Biris A S. Organic solar cells: A review of materials, limitations, and possibilities for improvement. Particulate Science and Technology, 2013, 31(5): 427–442

    Article  CAS  Google Scholar 

  107. Yang S, Fu W, Zhang Z, Chen H, Li C Z. Recent advances in perovskite solar cells: Efficiency, stability and lead-free perovskite. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(23): 11462–11482

    CAS  Google Scholar 

  108. Gong J, Sumathy K, Qiao Q, Zhou Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable & Sustainable Energy Reviews, 2017, 68: 234–246

    Article  CAS  Google Scholar 

  109. Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A, Vitiello M S. Black phosphorus terahertz photodetectors. Advanced Materials, 2015, 27(37): 5567–5572

    Article  CAS  PubMed  Google Scholar 

  110. Long G, Maryenko D, Shen J, Xu S, Hou J, Wu Z,WongWK, Han T, Lin J, Cai Y, et al. Achieving ultrahigh carrier mobility in twodimensional hole gas of black phosphorus. Nano Letters, 2016, 16 (12): 7768–7773

    Google Scholar 

  111. Cui S, Pu H, Wells S A, Wen Z, Mao S, Chang J, Hersam M C, Chen J. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nature Communications, 2015, 6(1): 8632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cai Y, Zhang G, Zhang YW. Layer-dependent band alignment and work function of few-layer phosphorene. Scientific Reports, 2014, 4(1): 6677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lin S, Liu S, Yang Z, Li Y, Ng TW, Xu Z, Bao Q, Hao J, Lee C S, Surya C, et al. Solution—processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics. Advanced Functional Materials, 2015, 26(6): 864–871

    Article  CAS  Google Scholar 

  114. Chen W, Li K, Wang Y, Feng X, Liao Z, Su Q, Lin X, He Z. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. Journal of Physical Chemistry Letters, 2017, 8(3): 591–598

    Article  CAS  PubMed  Google Scholar 

  115. Buscema M, Groenendijk D J, Steele G A, van der Zant H S J, Castellanos-Gomez A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nature Communications, 2014, 5(1): 4651

    Article  CAS  PubMed  Google Scholar 

  116. Dai J, Zeng X C. Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. Journal of Physical Chemistry Letters, 2014, 5(7): 1289–1293

    Article  CAS  PubMed  Google Scholar 

  117. Kim D R, Lee C H, Rao P M, Cho I S, Zheng X. Hybrid Si microwire and planar solar cells: Passivation and characterization. Nano Letters, 2011, 11(7): 2704–2708

    Article  CAS  PubMed  Google Scholar 

  118. Batmunkh M, Bat-Erdene M, Shapter J G. Phosphorene and phosphorene based materials—prospects for future applications. Advanced Materials, 2016, 28(39): 8586–8617

    Article  CAS  PubMed  Google Scholar 

  119. Kim W, McClure B A, Edri E, Frei H. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chemical Society Reviews, 2016, 45(11): 3221–3243

    Article  CAS  PubMed  Google Scholar 

  120. Liao P, Carter E A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chemical Society Reviews, 2013, 42(6): 2401–2422

    Article  CAS  PubMed  Google Scholar 

  121. Maeda K, Domen K. Photocatalytic water splitting: Recent progress and future challenges. Journal of Physical Chemistry Letters, 2010, 1(18): 2655–2661

    Article  CAS  Google Scholar 

  122. Ni M, Leung M K H, Leung D Y C, Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401–425

    Article  CAS  Google Scholar 

  123. Zhu X, Zhang T, Sun Z, Chen H, Guan J, Chen X, Ji H, Du P, Yang S. Black phosphorus revisited: A missing metal-free elemental photocatalyst for visible light hydrogen evolution. Advanced Materials, 2017, 29(17): 1605776

    Article  CAS  Google Scholar 

  124. Yang J, Wang D, Han H, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909

    Article  CAS  PubMed  Google Scholar 

  125. Zhu M, Cai X, Fujitsuka M, Zhang J, Majima T. Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and nearinfrared light. Angewandte Chemie International Edition, 2017, 56 (8): 2064–2068

    Google Scholar 

  126. Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J. Directly converting CO2 into a gasoline fuel. Nature Communications, 2017, 8: 15174

    Article  PubMed  PubMed Central  Google Scholar 

  127. Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408

    Article  CAS  PubMed  Google Scholar 

  128. Tran P D, Wong L H, Barber J, Loo J S C. Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science, 2012, 5(3): 5902–5918

    Article  CAS  Google Scholar 

  129. Zhang X, Zhang Z, Li J, Zhao X, Wu D, Zhou Z. Ti2CO2 MXene: A highly active and selective photocatalyst for CO2 reduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(25): 12899–12903

    CAS  Google Scholar 

  130. Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO reduction in ionic liquid. Science, 2016, 353(6298): 467–470

    Article  CAS  PubMed  Google Scholar 

  131. Liang Y T, Vijayan B K, Gray K A, Hersam M C. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Letters, 2011, 11(7): 2865–2870

    Article  CAS  PubMed  Google Scholar 

  132. Yuan Y P, Cao S W, Liao Y S, Yin L S, Xue C. Red phosphor/g- C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Applied Catalysis B: Environmental, 2013, 140-141: 164–168

    Article  CAS  Google Scholar 

  133. Shen Z, Sun S, Wang W, Liu J, Liu Z, Yu J C. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3285–3288

    Article  CAS  Google Scholar 

  134. Ito J I, Nishiyama H. Recent topics of transfer hydrogenation. Tetrahedron Letters, 2014, 55(20): 3133–3146

    Article  CAS  Google Scholar 

  135. Zhao J, Liu X, Chen Z. Frustrated Lewis pair catalysts in two dimensions: B/Al-doped phosphorenes as promising catalysts for hydrogenation of small unsaturated molecules. ACS Catalysis, 2017, 7(1): 766–771

    Article  CAS  Google Scholar 

  136. Caporali M, Serrano-Ruiz M, Telesio F, Heun S, Nicotra G, Spinella C, Peruzzini M. Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chemical Communications, 2017, 53(79): 10946–10949

    Article  CAS  PubMed  Google Scholar 

  137. Daghrir R, Drogui P, Robert D. Modified TiO2 for environmental photocatalytic applications: A review. Industrial & Engineering Chemistry Research, 2013, 52(10): 3581–3599

    Article  CAS  Google Scholar 

  138. Bhatkhande D S, Pangarkar V G, Beenackers A C M. Photocatalytic degradation for environmental applications: A review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2001, 77(1): 102–116

    Article  CAS  Google Scholar 

  139. Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. Journal of the American Chemical Society, 2015, 137 (35): 11376–11382

    Google Scholar 

  140. Jiang Q, Xu L, Chen N, Zhang H, Dai L, Wang S. facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction. Angewandte Chemie International Edition, 2016, 55(44): 13849–13853

    Article  CAS  PubMed  Google Scholar 

  141. Ren X, Zhou J, Qi X, Liu Y, Huang Z, Li Z, Ge Y, Dhanabalan S C, Ponraj J S, Wang S, et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Advanced Energy Materials, 2017, 7(19): 1700396

    Article  CAS  Google Scholar 

  142. Nielsch K, Bachmann J, Kimling J, Böttner H. Thermoelectric nanostructures: From physical model systems towards nanograined composites. Advanced Energy Materials, 2011, 1(5): 713–731

    Article  CAS  Google Scholar 

  143. Flores E, Ares J R, Castellanos-Gomez A, Barawi M, Ferrer I J, Sánchez C. Thermoelectric power of bulk black-phosphorus. Applied Physics Letters, 2015, 106(2): 022102

    Article  CAS  Google Scholar 

  144. Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Sung C H, Suslu A, Chen Y, Ko C, et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nature Communications, 2015, 6(1): 8573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xiao J, Long M, Zhang X, Ouyang J, Xu H, Gao Y. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets. Scientific Reports, 2015, 5(1): 9961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kuang A, Kuang M, Yuan H, Wang G, Chen H, Yang X. Acidic gases (CO2, NO2 and SO2) capture and dissociation on metal decorated phosphorene. Applied Surface Science, 2017, 410: 505–512

    Article  CAS  Google Scholar 

  147. Yu Z G, Zhang Y W, Yakobson B I. Phosphorene-based nanogenerator powered by cyclic molecular doping. Nano Energy, 2016, 23: 34–39

    Article  CAS  Google Scholar 

  148. Irshad R, Tahir K, Li B, Sher Z, Ali J, Nazir S. A revival of 2D materials, phosphorene: Its application as sensors. Journal of Industrial and Engineering Chemistry, 2018, 64(25): 60–69

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MBG gratefully acknowledge the support by the Ministry of Education, Youth and Sports of the Czech Republic under project LO1305, and under the Operational Program Research, Development and Education—European Regional Development Fund (project no. CZ.02.1.01/0.0/0.0/16_019/0000754).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj B. Gawande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, A., Gawande, M.B. Phosphorene: Current status, challenges and opportunities. Front. Chem. Sci. Eng. 13, 296–309 (2019). https://doi.org/10.1007/s11705-018-1783-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1783-y

Keywords

Navigation