Skip to main content

Advertisement

Log in

Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Black phosphorus (BP) is a type of relatively novel and promising material with some outstanding properties, such as its theoretical specific capacity (2596 mAh/g) being approximately seven times larger than that of graphite as a negative material for batteries. Phosphorene, a one-layer or several-layer BP, is a type of two-dimensional material. BP, phosphorene or their composite materials can significantly improve the performance of energy storage devices, e.g., mainly lithium ion batteries, sodium ion batteries and supercapacitors. Due to their attractive potential applications for energy storage, people have focused on BP/phosphorene for many years. This paper examines the existing literature and recent advances on this topic, covering the properties and preparation methods of BP and phosphorene along with the underlying principles of their electrochemical performance. Practical applications of BP as a negative material for energy storage are reviewed as well. In addition, problems regarding the ever-remaining need for improvements and developments are put forward to meet the demands of energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Park CM, Sohn HJ (2007) Black phosphorus and its composite for lithium rechargeable batteries. Adv Mater 19:2465–2468

    Article  Google Scholar 

  2. Sun XL, Qin XJ, Bo LM et al (2011) Advances of negative electrode material for lithium ion battery. Nonferrous Metals 2:147–151

    Google Scholar 

  3. Xu H, Chen L, Wang YD et al (2014) Research progress of phosphorus anode materials of lithium-ion batteries. Chin J Power Sources 381:161–164

    Google Scholar 

  4. Idota Y, Kubota T, Matsufuji A et al (1997) A tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395–1397

    Article  Google Scholar 

  5. Courtney IA, Dahn JR (1997) Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass. J Electrochem Soc 144:2943–2948

    Article  Google Scholar 

  6. Wen ZS, Yang J, Wang BF et al (2003) High capacity silicon/carbon composite anode materials for lithium ion batteries. Electrochem Commun 5:165–168

    Article  Google Scholar 

  7. Mitra S, Poizot P, Finke A et al (2006) Growth and electrochemical characterization versus lithium of Fe3O4 electrodes made by electrodeposition. Adv Funct Mater 16:2281–2287

    Article  Google Scholar 

  8. Kim YU, Lee CK, Sohn HJ et al (2004) Reaction mechanism of tin phosphide anode by mechanochemical method for lithium secondary batteries. J Electrochem Soc 151:A933–A937

    Article  Google Scholar 

  9. Kim Y-U, Cho BW, Sohn H-J (2005) The reaction mechanism of lithium insertion in vanadium tetraphosphide: a possible anode material in lithium-ion batteries. J Electrochem Soc 152:A1475–A1478

    Article  Google Scholar 

  10. Woo S-G, Jung JH, Kim H et al (2006) Electrochemical characteristics of Ti–P composites prepared by mechanochemical synthesis. J Electrochem Soc 153:A1979–A1983

    Article  Google Scholar 

  11. Wang X, Zhou X, Ke Y et al (2011) A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49:133–139

    Article  Google Scholar 

  12. Wang G, Wang B, Wang X et al (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19:8378–8384

    Article  Google Scholar 

  13. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  14. Lu YH, Feng YP (2011) Electric-field control of the activity of the graphene-based catalyst. Sci China Phys Mech Astron 54:804–808

    Article  Google Scholar 

  15. Qiu H, Xu T, Wang Z et al (2013) Hopping transport through defect-induced localized states in molybdenum disulphide. Nat Commun 4:2642

    Google Scholar 

  16. Ayari A, Cobas E, Ogundadegbe O et al (2007) Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J Appl Phys 101:014507–014507-5

    Article  Google Scholar 

  17. Xu X, Fan Z, Ding S et al (2014) Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage. Nanoscale 6:5245–5250

    Article  Google Scholar 

  18. Sun Z, Martinez A, Wang F (2016) Optical modulators with two-dimensional layered materials. Nat Photonics 10:227–238

    Article  Google Scholar 

  19. Xia F, Wang H, Jia Y (2014) Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun 5:4458

    Google Scholar 

  20. Xia F, Wang H, Xiao D et al (2014) Two-dimensional material nanophotonics. Nat Photonics 8:899–907

    Article  Google Scholar 

  21. Castellanosgomez A, Vicarelli L, Prada E et al (2014) Isolation and characterization of few-layer black phosphorus. 2D Mater 1:23–29

    Google Scholar 

  22. Reich ES (2014) Phosphorene excites materials scientists. Nature 506:19

    Article  Google Scholar 

  23. Liu H, Neal AT, Zhu Z et al (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8:4033–4041

    Article  Google Scholar 

  24. Bridgman PW (1914) Two new modifications of phosphorus. J Am Chem Soc 36:1344–1363

    Article  Google Scholar 

  25. Morita A (1986) Semiconducting black phosphorus. Appl Phys A 39:227–242

    Article  Google Scholar 

  26. Cartz L, Srinivasa SR, Riedner RJ et al (1979) Effect of pressure on bonding in black phosphorus. J Chem Phys 71:1718–1721

    Article  Google Scholar 

  27. Low T, Rodin AS, Carvalho A et al (2014) Tunable optical properties of multilayer black phosphorus thin films. Phys Rev B 90:075434–1–075434–5

    Google Scholar 

  28. Tran V, Soklaski R, Liang Y et al (2014) Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 89:817–824

    Google Scholar 

  29. Chen Y, Ren R, Pu H et al (2016) Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens Bioelectron 89:505–510

    Article  Google Scholar 

  30. Li D, Castillo AEDR, Jussila H et al (2016) Black phosphorus polycarbonate polymer composite for pulsed fibrelasers. Appl Mater Today 4:17–23

    Article  Google Scholar 

  31. He HN, Wang HY, Tang YG et al (2014) Current study of anode materials for sodium-ion battery. Prog Chem 26:572–581

    Google Scholar 

  32. Liu H, Du Y, Deng Y et al (2015) Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem Soc Rev 44:2732–2743

    Article  Google Scholar 

  33. Du Y, Neal AT, Zhou H et al (2016) Transport studies in 2d transition metal dichalcogenides and black phosphorus. J Phys Condens Matter 28:263002

    Article  Google Scholar 

  34. Ling X, Wang H, Huang S et al (2015) The renaissance of black phosphorus. Proc Natl Acad Sci 112:4523–4530

    Article  Google Scholar 

  35. Hultgren R, Gingrich NS, Warren BE (1935) The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J Chem Phys 3:351–355

    Article  Google Scholar 

  36. Keyes RW (1953) The electrical properties of black phosphorus. Phys Rev 92:580–584

    Article  Google Scholar 

  37. Endo S, Akahama Y, Terada S et al (1982) Growth of large single crystals of black phosphorus under high pressure. Jpn J Appl Phys 21:L482–L484

    Article  Google Scholar 

  38. Fei R, Faghaninia A, Soklaski R et al (2014) Enhanced thermo-electric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett 14:6393–6399

    Article  Google Scholar 

  39. Lv HY, Lu WJ, Shao DF et al (2014) Large thermoelectric power factors in black phosphorus and phosphorene. Physics. arXiv:1404.5171

  40. Shao DF, Lu WJ, Lv HY et al (2014) Electron-doped phosphorene: a potential monolayer superconductor. Physics. doi:10.1209/0295-5075/108/67004

    Google Scholar 

  41. Wei Q, Peng X (2014) Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl Phys Lett 104:251915-1–251915-5

    Google Scholar 

  42. Fei R, Yang L (2014) Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett 14:2884–2889

    Article  Google Scholar 

  43. Wu Q, Shen L, Yang M et al (2014) Giant Stark effect on band gaps of phosphorene nanoribbons. arXiv:1405.3077v1401

  44. Tran V, Li Y (2014) Unusual scaling laws of the band gap and optical absorption of phosphorene nanoribbons. Phys Rev B 89:2230–2236

    Google Scholar 

  45. Bachhuber F, Von Appen J, Dronskowski R et al (2014) The extended stability range of phosphorus allotropes. Angew Chem Int Ed 53:11629–11633

    Article  Google Scholar 

  46. Qiao J, Kong X, Hu ZX et al (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5:4475

    Google Scholar 

  47. Li L, Yu Y, Ye G et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377

    Article  Google Scholar 

  48. Zeng XM, Yan HJ, Ouyang CY (2012) First principles investigation of dynamic performance in the process of lithium intercalation into black phosphorus. Acta Phys Sin Chin Ed 61:247101–247379

    Google Scholar 

  49. Jamieson JC (1963) Crystal structures adopted by black phosphorus at high pressures. Science 139:1291–1292

    Article  Google Scholar 

  50. Akahama Y, Endo S, Narita S (1986) Electrical properties of single-crystal black phosphorus under pressure. Phys B+C 139:397–400

    Article  Google Scholar 

  51. Narita S, Akahama Y, Tsukiyama Y et al (1983) Electrical and optical properties of black phosphorus single crystals. Phys B 117&118:422–424

    Article  Google Scholar 

  52. Li W, Yang Y, Zhang G et al (2015) Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett 15:1691

    Article  Google Scholar 

  53. Luo Z, Maassen J, Deng Y et al (2015) Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat Commun 6:8572–8579

    Article  Google Scholar 

  54. Sun HY, Liu G, Li QF et al (2016) First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus. Phys Lett A 380:2098–2104

    Article  Google Scholar 

  55. Jiang JW, Park HS (2014) Negative poisson’s ratio in single-layer black phosphorus. Nat Commun 5:4727

    Google Scholar 

  56. Du Y, Maassen J, Wu W et al (2016) Auxetic black phosphorus: a 2D material with negative poisson’s ratio. Nano Lett 16:6701–6708

    Article  Google Scholar 

  57. Maruyama Y, Suzuki S, Kobayashi K et al (1981) Synthesis and some properties of black phosphorus single crystals. Phys B 105:99–102

    Article  Google Scholar 

  58. Das S, Zhang W, Demarteau M (2014) Tunable transport gap in phosphorene. Nano Lett 14:5733–5739

    Article  Google Scholar 

  59. Jacobs RB (1937) Phosphorus at high temperatures and pressures. J Chem Phys 5:945–953

    Article  Google Scholar 

  60. Lange S, Schmidt P, Nilges T (2007) Au3SnP7@black phosphorus: an easy access to black phosphorus. Inorg Chem 46:4028–4035

    Article  Google Scholar 

  61. Nilges T, Kersting M, Pfeifer T (2008) A fast low-pressure transport route to large black phosphorus single crystals. J Solid State Chem 18:11707–11711

    Google Scholar 

  62. Köpf M, Eckstein N, Pfister D et al (2014) Access and in situ growth of phosphorene-precursor black phosphorus. J Cryst Growth 405:6–10

    Article  Google Scholar 

  63. Zhao M, Qian HL, Niu XY et al (2016) Growth mechanism and enhanced yield of black phosphorus microribbons. Cryst Growth Des 16:1096–1103

    Article  Google Scholar 

  64. Brown A, Rundqvist S (1965) Refinement of the crystal structure of black phosphorus. Acta Crystallogr A 19:684–685

    Article  Google Scholar 

  65. Baba M, Izumida F, Takeda Y et al (1989) Preparation of black phosphorus single crystals by a completely closed bismuth-flux method and their crystal morphology. Jpn J Appl Phys 28:1019–1022

    Article  Google Scholar 

  66. Suryanarayana C (2001) Mechanical alloying and milling. Program Mater Sci 46:1–184

    Article  Google Scholar 

  67. Nagao M, Hayashi A, Tatsumisago M (2011) All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode. J Power Sources 196:6902–6905

    Article  Google Scholar 

  68. Li X, Deng B, Wang X et al (2015) Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater 2. arXiv:1508.05171

  69. Jiang QQ, Xu L, Chen N et al (2016) Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angew Chem 128:1–6

    Article  Google Scholar 

  70. Koenig SP, Doganov RA, Schmidt H et al (2014) Electric field effect in ultrathin black phosphorus. Appl Phys Lett 104:103–106

    Article  Google Scholar 

  71. Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  Google Scholar 

  72. Smith RJ, King PJ, Lotya M et al (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23:3944–3948

    Article  Google Scholar 

  73. Late DJ (2016) Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor. Microporous Mesoporous Mater 225:494–503

    Article  Google Scholar 

  74. Lu WL, Nan HY, Hong JH et al (2014) Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res 7:853–859

    Article  Google Scholar 

  75. Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  Google Scholar 

  76. Nicolosi V, Chhowalla M, Kanatzidis M et al (2013) Liquid exfoliation of layered materials. Science 340:1420

    Article  Google Scholar 

  77. Brent JR, Savjani N, Lewis EA et al (2014) Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem Commun 50:13338–13341

    Article  Google Scholar 

  78. Kang J, Wood JD, WellsSolvent SA et al (2015) Exfoliation of electronic-grade two-dimensional black phosphorus. ACS Nano 9:3596–3604

    Article  Google Scholar 

  79. Yasaei P, Kumar B, Foroozan T et al (2015) High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv Mater 27:1887–1892

    Article  Google Scholar 

  80. Wood JD, Wells SA, Jariwala D et al (2014) Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett 14:6964–6970

    Article  Google Scholar 

  81. Chen L, Zhou GM, Liu ZB et al (2016) Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv Mater. doi:10.1002/adma.201503678

    Google Scholar 

  82. Schmidt H, Wang SF, Chu LQ et al (2014) Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett 14:1909–1913

    Article  Google Scholar 

  83. Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30

    Article  Google Scholar 

  84. Smith JB, Hagaman D, Ji HF (2016) Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27:215602

    Article  Google Scholar 

  85. Yan SC, Wang BJ, Wang ZL et al (2016) Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing. Biosens Bioelectron 80:34–38

    Article  Google Scholar 

  86. Zhang X, Xiang J, Mu C et al (2017) SnS2 nanoflakes anchored graphene obtained by liquid phase exfoliation and MoS2 nanosheet composites as lithium and sodium battery anodes. Electrochim Acta 227:203–209

    Article  Google Scholar 

  87. Zhang Q, Wang W, Jiang D (2016) Mesoporous activated carbon decorated with MnO as anode materials for lithium ion batteries. J Mater Sci 51:3536–3544. doi:10.1007/s10853-015-9673-x

    Article  Google Scholar 

  88. Hong SA, Lee SB, Joo OS et al (2016) Synthesis of lithium titanium oxide (Li4Ti5O12) with ultrathin carbon layer using supercritical fluids for anode materials in lithium batteries. J Mater Sci 51:6220–6234. doi:10.1007/s10853-016-9920-9

    Article  Google Scholar 

  89. Li JY, Wang L, He XM (2016) Phosphorus-based composite anode materials for secondary batteries. Prog Chem 28:193–203

    Google Scholar 

  90. Niu J, Zhang S, Niu Y et al (2015) Silicon-based anode materials for lithium-ion batteries. Prog Chem (Beijing) 27:1275–1290

    Google Scholar 

  91. Wang L, He XM, Li JJ et al (2012) Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew Chem Int Ed 51:9034–9037

    Article  Google Scholar 

  92. Yu ZX, Song JX, Gordin ML et al (2015) Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv Sci 2:1400020

    Article  Google Scholar 

  93. Kim Y, Park Y, Choi A et al (2013) Composites: an amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater 25:3045–3049

    Article  Google Scholar 

  94. Mayo M, Griffith KJ, Pickard CJ et al (2016) Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries. Chem Mater 28:2011–2021

    Article  Google Scholar 

  95. Batmunkh M, Bat-Erdene M, Shapter JG et al (2016) Phosphorene and phosphorene-based materials-prospects for future applications. Adv Mater 28:8586–8617

    Article  Google Scholar 

  96. Stan MC, Zamory JV, Passerini S et al (2013) Puzzling out the origin of the electrochemical activity of black P as a negative electrode material for lithium-ion batteries. J Mater Chem A 1:5293–5300

    Article  Google Scholar 

  97. Crosnier O, Nazar LF (2004) Facile reversible displacement reaction of Cu3P with lithium at low potential. Electrochem Solid-State Lett 7:3071–3076

    Article  Google Scholar 

  98. Stan MC, Klöpsch R, Bhaskar A et al (2013) Cu3P binary phosphide: synthesis via a wet mechanochemical method and electrochemical behavior as negative electrode material for lithium-ion batteries. Adv Energy Mater 3:231–238

    Article  Google Scholar 

  99. Sun J, Zheng GY, Lee HW et al (2014) Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle composite battery anodes. Nano Lett 14:4573–4580

    Article  Google Scholar 

  100. Ramireddy T, Tan X, Rahman MM et al (2015) Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J Mater Chem A 3:5572–5584

    Article  Google Scholar 

  101. Sun LQ, Li MJ, Sun K et al (2012) Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J Phys Chem C 116:14772–14779

    Article  Google Scholar 

  102. Li YM, Hu YS, Qi XG et al (2016) Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Mater 5:191–198

    Article  Google Scholar 

  103. Yang ZG, Zhang JL, Michael CW et al (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  Google Scholar 

  104. Li WJ, Chou SL, Wang JZ et al (2013) Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett 13:5480–5484

    Article  Google Scholar 

  105. Kim SW, Seo DH, Ma XH et al (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  Google Scholar 

  106. Slater MD, Kim D, Lee E et al (2012) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  Google Scholar 

  107. Su H, Jaffer S, Yu HJ et al (2016) Transition metal oxides for sodium-ion batteries. Energy Storage Mater 5:116–131

    Article  Google Scholar 

  108. Sun J, Lee HW, Pasta M et al (2016) Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Mater 4:130–136

    Article  Google Scholar 

  109. Longoni G, Fiore M, Kim J-H et al (2016) Co3O4 negative electrode material for rechargeable sodium ion batteries: an investigation of conversion reaction mechanism and morphology-performances correlations. J Power Sources 332:42–50

    Article  Google Scholar 

  110. Feng JM, Zhong XH, Wang GZ et al (2017) Hybrid materials of graphene anchored with CoFe2O4 for the anode in sodium-ion batteries. J Mater Sci 52:3124–3132. doi:10.1007/s10853-016-0601-5

    Article  Google Scholar 

  111. Hui T, Hu GH, Hu GR et al (2006) Synthesis research of lithium ion battery cathode material LiFePO4/C. J Chin Inorg Chem 12:2159–2164

    Google Scholar 

  112. Kulish VV, Malyi OI, Persson C et al (2015) Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys Chem Chem Phys 17:13921–13928

    Article  Google Scholar 

  113. Qian J, Wu X, Cao Y et al (2013) High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed 52:4633–4636

    Article  Google Scholar 

  114. Qian JF, Wu XY, Cao YL et al (2012) Black phosphorus as high capacity anode material for Na-ion batteries. In: The 16th international forum on new energy material and technology, Chengdu, Sichuan, China, 6–9 July 2012

  115. Guo Q, Ru Q, Chen XQ et al (2016) Performance of P/SnSb/C composite as anode of sodium ion battery. Chin J Battery Bimon 46:185–188

    Google Scholar 

  116. Sun J, Lee HW, Pasta M et al (2015) A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 10:980–985

    Article  Google Scholar 

  117. Xu GL, Chen Z, Zhong G et al (2016) Nanostructured black phosphorus/ketjenblack-MWCNTs composite as high performance anode material for sodium-ion batteries. Nano Lett 16:3955

    Article  Google Scholar 

  118. Dahbi M, Yabuuchi N, Fukunishi M et al (2016) Black phosphorus as a high-capacity and high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface. Am Chem Soc 28:1625–1635

    Google Scholar 

  119. Luo W, Wan J, Ozdemir B et al (2015) Potassium ion batteries with graphitic materials. Nano Lett 15:7671–7677

    Article  Google Scholar 

  120. Wang Y, Chen R, Chen T et al (2016) Emerging non-lithium ion batteries. Energy Storage Mater 4:103–129

    Article  Google Scholar 

  121. Liu B, Luo T, Mu G et al (2013) Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 7:8051–8058

    Article  Google Scholar 

  122. Tao ZL, Xu LN, Gou XL et al (2004) TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem Commun 10:2080

    Article  Google Scholar 

  123. Jin W, Wang Z, Fu YQ (2016) Monolayer black phosphorus as potential anode materials for Mg-ion batteries. J Mater Sci 51:7355–7360. doi:10.1007/s10853-016-0023-4

    Article  Google Scholar 

  124. Ahmad S, Copic D, George C et al (2016) Flexible batteries: hierarchical assemblies of carbon nanotubes for ultraflexible Li-ion batteries. Adv Mater 28:6704

    Article  Google Scholar 

  125. Liu B, Zhang JG, Shen G (2016) Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. Nano Today 11:82–97

    Article  Google Scholar 

  126. Kang C, Baskaran R, Hwang J et al (2014) Large scale patternable 3-dimensional carbon nanotube-graphene structure for flexible Li-ion battery. Carbon 68:493–500

    Article  Google Scholar 

  127. Park MH, Noh M, Lee S et al (2014) Flexible high-energy Li-ion batteries with fast-charging capability. Nano Lett 14:4083–4089

    Article  Google Scholar 

  128. Wang X, Lu X, Liu B et al (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26:4763–4782

    Article  Google Scholar 

  129. Glenneberg J, Andre F, Bardenhagen I et al (2016) A concept for direct deposition of thin film batteries on flexible polymer substrate. J Power Sources 324:722–728

    Article  Google Scholar 

  130. Cai K, Liu L, Shi J et al (2017) Winding a nanotube from black phosphorus nanoribbon onto a CNT at low temperature: a molecular dynamics study. Mater Des 121:406–413

    Article  Google Scholar 

  131. Lee C, Wei X, Kysar J et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  132. Kim J, Baik SS, Ryu SH et al (2015) Cheminform abstract: observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349:723–726

    Article  Google Scholar 

  133. Wang Z, Jia H, Zheng X et al (2016) Resolving and tuning mechanical anisotropy in black phosphorus via nanomechanical multimode resonance spectromicroscopy. Nano Lett 16:5394–5400

    Article  Google Scholar 

  134. Jin ZX, Mu WF, Zhang CJ et al (2012) Activated carbon modified by coupling agent for supercapacitor. Electrochim Acta 59:100–104

    Article  Google Scholar 

  135. Cai KD, Mu WF, He TS et al (2012) Investigation of the electrode molding technologies for the carbon-based supercapacitors. J Solid State Electrochem 16:2541–2546

    Article  Google Scholar 

  136. Zhao X, Qiu PD, Jiang HJ et al (2015) Latest research progress of electrode materials for supercapacitor. Electron Compos Mater 34:1–9

    Google Scholar 

  137. Cai KD, Mu WF, Zhang QG et al (2010) Study on the application of N, N-1,4-diethyl, triethylene, and diamine tetrafluoroborate in supercapacitors. Electrochem Solid-State Lett 13:A147–A149

    Article  Google Scholar 

  138. Hao CX, Yang BC, Wen FS et al (2016) Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv Mater 28:3194–3201

    Article  Google Scholar 

  139. Xu F, Ge B, Chen J et al (2015) Shear-exfoliated phosphorene for rechargeable nanoscale battery. Mathematics. arXiv:1508.07481

  140. Island JO, Steele GA, Zant HSJVD et al (2015) Environmental instability of few-layer black phosphorus. 2D Mater 2:011002

    Article  Google Scholar 

  141. Favron A, Gaufrès E, Fossard F et al (2015) Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater 14:826–832

    Article  Google Scholar 

  142. Kim JS, Liu Y, Zhu W et al (2015) Toward air-stable multilayer phosphorene thin-films and transistors. Sci Rep 5:8989

    Article  Google Scholar 

  143. Xiang D, Han C, Wu J et al (2015) Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat Commun 6:6485

    Article  Google Scholar 

  144. Ryder CR, Wood JD, Wells SA et al (2016) Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat Chem 8:597

    Article  Google Scholar 

  145. Ahmed F, Kim YD, Choi MS et al (2016) High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering. Adv Funct Mater 27:1604025-1–1604025-9

    Google Scholar 

  146. Sarswat PK, Sarkar S, Bhattacharyya D et al (2016) Dopants induced structural and optical anomalies of anisotropic edges of black phosphorous thin films and crystals. Ceram Int 42:13113–13127

    Article  Google Scholar 

  147. Chen X, Wu Y, Wu Z et al (2014) High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat Commun 6:7315

    Article  Google Scholar 

  148. Tayari V, Hemsworth N, Fakih I et al (2014) Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat Commun 6:7702

    Article  Google Scholar 

  149. Li L, Ye GJ, Tran V et al (2015) Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat Nanotechnol 10:608

    Article  Google Scholar 

  150. Luo X, Rahbarihagh Y, Hwang JCM et al (2014) Temporal and thermal stability of Al2O3-passivated phosphorene MOSFETs. IEEE Electron Device Lett 35:1314–1316

    Article  Google Scholar 

  151. Kim J, Baek SK, Kim KS et al (2015) Long-term stability study of graphene-passivated black phosphorus under air exposure. Curr Appl Phys 16:165–169

    Article  Google Scholar 

  152. Yue D, Lee D, Jang YD et al (2016) Passivated ambipolar black phosphorus transistors. Nanoscale 8:12773

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 21406098), the Cultivation Fund for Yunling Scholar in Yunnan Province (No. 10978195, Yunnan China), the Natural Science Foundation of China (No. 51603096), the Construction Fund of Key Discipline in Kunming University of Science and Technology (No. 14078301, Yunnan China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Mei.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest for this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Lian, P., Xie, D. et al. Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review. J Mater Sci 52, 10364–10386 (2017). https://doi.org/10.1007/s10853-017-1194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1194-3

Keywords

Navigation