Skip to main content
Log in

Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Bleached bamboo kraft pulp was pretreated by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)- mediated oxidation using a TEMPO/NaBr/NaClO system at pH = 10 in water to facilitate mechanical disintegration into TEMPO-oxidized cellulose nanofibrils (TO-CNs). A series of TO-CNs with different carboxylate contents were obtained by varying amounts of added NaClO. An increase in carboxylate contents results in aqueous TO-CN dispersions with higher yield, zeta potential values, and optical transparency. When carboxylate groups are introduced, the DPv value of the TO-CNs remarkably decreases and then levels off. And the presence of hemicellulose in the pulp is favorable to TEMPO oxidization. After the oxidization, the native cellulose I crystalline structure and crystal size of bamboo pulp are almost maintained. TEM micrographs revealed that the degree of nanofibrillation is directly proportional to the carboxylate contents. With increasing carboxylate contents, the free-standing TO-CN films becomes more transparent and mechanically stronger. The oxygen permeability of PLA films drastically decreases from 355 for neat PLA to 8.4 mL∙m–2∙d–1 after coating a thin layer of TO-CN with a carboxylate content of 1.8 mmol∙g–1. Therefore, inexpensive and abundant bamboo pulp would be a promising starting material to isolate cellulose nanfibrils for oxygen-barrier applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose (London, England), 2010, 17(3): 459–494

    Google Scholar 

  2. Kalia S, Boufi S, Celli A, Kango S. Nanofibrillated cellulose: Surface modification and potential applications. Colloid & Polymer Science, 2014, 292(1): 5–31

    Article  CAS  Google Scholar 

  3. Dieter K, Friederike K, Sebastian M, Tom L M, Mikael A, Derek G. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 2011, 50(24): 5438–5466

    Article  Google Scholar 

  4. Dufresne A. Nanocellulose: A new ageless bionanomaterial. Materials Today, 2013, 16(6): 220–227

    Article  CAS  Google Scholar 

  5. Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011, 3(1): 71–85

    Article  CAS  Google Scholar 

  6. Khalil H P S A, Davoudpour Y, Islam M N, Mustapha A, Sudesh K, Dungani R, Jawaid M. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 2014, 99: 649–665

    Article  Google Scholar 

  7. Besbes I, Alila S, Boufi S. Nanofibrillated cellulose from TEMPOoxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydrate Polymers, 2011, 84(3): 975–983

    Article  CAS  Google Scholar 

  8. Tsuguyuki S, Yoshiharu N, Jean-Luc P, Michel V, Akira I. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 2006, 7(6): 1687–1691

    Article  Google Scholar 

  9. Saito T, Kimura S, Nishiyama Y, Isogai A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 2007, 8(8): 2485–2491

    Article  CAS  Google Scholar 

  10. Puangsin B, Fujisawa S, Kuramae R, Saito T, Isogai A. TEMPOmediated oxidation of hemp bast holocellulose to prepare cellulose nanofibrils dispersed in water. Journal of Polymers and the Environment, 2013, 21(2): 555–563

    Article  CAS  Google Scholar 

  11. Rodionova G, Saito T, Lenes M, Eriksen Ø, Gregersen Ø, Fukuzumi H, Isogai A. Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose (London, England), 2012, 19(3): 705–711

    CAS  Google Scholar 

  12. Puangsin B, Yang Q, Saito T, Isogai A. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. International Journal of Biological Macromolecules, 2013, 59: 208–213

    Article  CAS  Google Scholar 

  13. Sehaqui H, Zhou Q, Ikkala O, Berglund L A. Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules, 2011, 12(10): 3638–3644

    Article  CAS  Google Scholar 

  14. Montanari S, Roumani M, Heux L, Vignon M R. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPOmediated oxidation. Macromolecules, 2005, 38(5): 1665–1671

    Article  CAS  Google Scholar 

  15. Wang H, Zhang X, Jiang Z, Li W, Yu Y. A comparison study on the preparation of nanocellulose fibrils from fibers and parenchymal cells in bamboo (Phyllostachys pubescens). Industrial Crops and Products, 2015, 71: 80–88

    Article  CAS  Google Scholar 

  16. Saito T, Isogai A. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules, 2004, 5(5): 1983–1989

    Article  CAS  Google Scholar 

  17. Smith D K, Bampton R F, Alexander W J. Use of new solvents for evaluating chemical cellulose for the viscose process. Industrial & Engineering Chemistry Process Design and Development, 1963, 2 (1): 57–62

    Article  CAS  Google Scholar 

  18. Segal L, Creely J, Martin A Jr, Conrad C. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 1959, 29(10): 786–794

    Article  CAS  Google Scholar 

  19. Scherrer P. Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges.Wiss. Gottingen, 1918, 2: 98–112

    Google Scholar 

  20. Jiang F, Esker A R, Roman M. Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir, 2010, 26(23): 17919–17925

    Article  CAS  Google Scholar 

  21. Shinoda R, Saito T, Okita Y, Isogai A. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 2012, 13(3): 842–849

    Article  CAS  Google Scholar 

  22. Jiang F, Hsieh Y L. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers, 2013, 95(1): 32–40

    Article  CAS  Google Scholar 

  23. Fukuzumi H, Saito T, Okita Y, Isogai A. Thermal stabilization of TEMPO-oxidized cellulose. Polymer Degradation & Stability, 2010, 95(9): 1502–1508

    Article  CAS  Google Scholar 

  24. Da Silva Perez D, Montanari S, Vignon M R. TEMPO-mediated oxidation of cellulose III. Biomacromolecules, 2003, 4(5): 1417–1425

    Article  Google Scholar 

  25. Isogai T, Saito T, Isogai A. Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose (London, England), 2011, 18(2): 421–431

    CAS  Google Scholar 

  26. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 2008, 10(1): 162–165

    Article  Google Scholar 

  27. Henriksson M, Berglund L A, Isaksson P, Lindström T, Nishino T. Cellulose nanopaper structures of high toughness. Biomacromolecules, 2008, 9(6): 1579–1585

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from the Public Welfare Projects of Zhejiang Province (No. 2016C33029 & 2017C33113), the National Natural Science Foundation of China (Grant No. 21404092), and Scientific Research Foundation of Zhejiang Agricultural & Forestry University (No. 2013FR088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongzhi Liu, Guangyao Li or Qiang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Geng, B., Chen, Y. et al. Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films. Front. Chem. Sci. Eng. 11, 554–563 (2017). https://doi.org/10.1007/s11705-017-1673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1673-8

Keywords

Navigation