Skip to main content
Log in

Chitosan-functionalized Fe3O4@SiO2 nanoparticles as a potential drug delivery system

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This study developed and characterized the chitosan-functionalized Fe3O4@SiO2 nanoparticles (Fe3O4@SiO2@CS NP) as a drug delivery system. Fe3O4 NP were first synthesized by co-precipitation method, followed by coating with SiO2, and functionalized with chitosan via glutaraldehyde crosslinking bridges. The newly synthesized Fe3O4@SiO2@CS NP possessed an octagonal shape with a diameter of ~ 20 nm. In the FT-IR spectrum, the Fe3O4@SiO2@CS NP demonstrated the appearances of C–O, N–H, and C–H peaks, indicating the presence of chitosan in their structures. The Fe3O4@SiO2@CS NP could preserve the Fe3O4 magnetic property with a magnetization value of 52.43 emu/g, a magnetization remanence of almost 0 emu/g, and minimal residual coercivity. Utilizing curcumin as a drug model, the Fe3O4@SiO2@CS NP could adsorb the drug rapidly, to more than 71% within 20 min, with an adsorption capacity of 6.54 mg/g and an adsorption energy of 0.2029 kJ/mol (following the Dubinin–Radushkevich model). The curcumin adsorption process was in good agreement with the pseudo-second-order kinetics (R2 = 0.9975). Interestingly, in the simulated body fluid, the curcumin-loaded Fe3O4@SiO2@CS NP could retain the curcumin release, with no detectable drug release, in the first hour, followed by a burst release within the next hour. This confirms the contribution of CS in the system. Conclusively, the Fe3O4@SiO2@CS NP could be further developed to potentially become a controlled-release drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggarwal BB, Sundaram C, Malani N, Curcumin IH (2007) The Indian solid gold. In: Aggarwal BB, Sundaram C, Malani N, Ichikawa H (eds) The molecular targets and therapeutic uses of curcumin in health and disease, advances in experimental medicine and biology, vol 595. Springer. Boston, pp 1–75

    Google Scholar 

  • Ak T, Gülçin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174(1):27–37

    Article  CAS  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818

    Article  CAS  Google Scholar 

  • Aranaz I, Harris R, Heras A (2010) Chitosan amphiphilic derivatives. Chem Appl Curr Org Chem 14(3):308–330

    Article  CAS  Google Scholar 

  • Cahyaningrum SE, Sianita MM (2014) Immobilization of pepsin onto chitosan silica nanobeads with glutaraldehyde as crosslink agent. Bull Chem React Eng Catal 9(3):263–269

    Article  Google Scholar 

  • Cai W, Guo M, Weng X, Zhang W, Owens G, Chen Z (2020) Modified green synthesis of Fe3O4@SiO2 nanoparticles for pH responsive drug release. Mater Sci Eng C 112:110900

    Article  CAS  Google Scholar 

  • Cardile V, Frascaa G, Rizzab L, Boninab F, Pugliab C, Bargec A, Chiambrettic N, Cravottoc G (2008) Improved adhesion to mucosal cells of water-soluble chitosan tetraalkylammonium salts. Int J Pharm 362:88–92

    Article  CAS  Google Scholar 

  • Cheng J, Tan G, Li W, Zhang H, Wu X, Wang Z, Jin Y (2016) Facile synthesis of chitosan assisted multifunctional magnetic Fe3O4@SiO2@CS@pyropheophorbide-a fluorescent nanoparticles for photodynamic therapy. New J Chem 10:8522–8534

    Article  Google Scholar 

  • Chuah LH, Billa N, Roberts CJ, Burley JC, Manickam S (2013) Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharm Dev Technol 18(3):591–599

    Article  CAS  Google Scholar 

  • Deineka V, Sulaieva O, Pernakov M, Korniienko V, Husak Y, Yanovska A, Yusupova A, Tkachenko Y, Kalinkevich O, Zlatska A, Pogorielov M (2021) Hemostatic and tissue regeneration performance of novel electrospun chitosan-based materials. Biomedicines 9(6):588

    Article  CAS  Google Scholar 

  • El Ghandoor H, Zidan HM, Khalil MMH, Ismail MIM (2012) Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci 7(6):5734–5745

    Google Scholar 

  • Faiyas APA, Vinod EM, Joseph J, Ganesan R, Pandey RK (2010) Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties. J Magn Magn Mater 322(4):400–404

    Article  CAS  Google Scholar 

  • Fernandez-Saiz P, Lagarón JM, Ocio MJ (2009) Optimization of the film-forming and storage conditions of chitosan as an antimicrobial agent. J Agric Food Chem 57(8):3298–3307

    Article  CAS  Google Scholar 

  • Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE (2016) Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol Ind Health 32(2):246–250

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  Google Scholar 

  • Hariani PL, Faizal M, Ridwan R, Marsi M, Setiabudidaya D (2013) Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int J Environ Sci Dev 4(3):336–340

    Article  CAS  Google Scholar 

  • Jeong H (2011) The effect of voltage on a conductivity gradient in a nanochannel and its application to protein trapping. Macquarie Matrix 1:17–33

    Google Scholar 

  • Karimzadeh I, Dizaji HR, Aghazadeh M (2016) Development of a facile and effective electrochemical strategy for preparation of iron oxides (Fe3O4 and γ-Fe2O3) nanoparticles from aqueous and ethanol mediums and in situ PVC coating of Fe3O4 superparamagnetic nanoparticles for biomedical applications. J Magn Magn Mater 416:81–88

    Article  CAS  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    Article  CAS  Google Scholar 

  • Kundu S, Nithiyanantham U (2013) In situ formation of curcumin stabilized shape-selective Ag nanostructures in aqueous solution and their pronounced SERS activity. RSC Adv 3:25278–25290

    Article  CAS  Google Scholar 

  • Langone P, Debata PR, Dolai S, Curcio GM, Inigo JDR, Raja K, Banerjee P (2011) Coupling to a cancer cell-specific antibody potentiates tumoricidal properties of curcumin. Int J Cancer 131(4):1–10

    Google Scholar 

  • Liu S, Yu B, Wang S, Shen Y, Cong H (2020) Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv Coll Interface Sci 281:102165–102194

    Article  CAS  Google Scholar 

  • Mohanty C, Sahoo SK (2017) Curcumin and its topical formulations for wound healing applications. Drug Discov Today 22(10):1582–1592

    Article  CAS  Google Scholar 

  • Naderi E, Naseri M, Taimouri Rad H, Zolfaghari Emameh R, Farnoosh Gh, Ali TR (2020) In vivo and In vitro biocompatibility study of Fe3O4@ZnO and Fe3O4@SiO2 as photosensitizer for targeted breast cancer drug delivery. J Sci Islam Repub Iran 31(4):357–368

    Google Scholar 

  • O’Toole MG, Soucy PA, Chauhan R, Raju MVR, Patel DN, Nunn BM, Keynton MA, Ehringer WD, Nantz MH, Keynton RS, Gobin AS (2016) Release-modulated antioxidant activity of a composite curcumin-chitosan polymer. Biomacromol 17(4):1253–1260

    Article  Google Scholar 

  • Patrulea V, Ostafe V, Borchard G, Jordan O (2015) Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm 97:417–426

    Article  CAS  Google Scholar 

  • Qin H, Wang CM, Dong QQ, Zhang L, Zhang X, Ma ZY, Han QR (2015) Preparation and characterization of magnetic Fe3O4-chitosan nanoparticles loaded with isoniazid. J Magn Magn Mater 381:120–126

    Article  CAS  Google Scholar 

  • Qin X, Mukerabigwi JF, Ma M, Huang R, Ma M, Huang X, Cao Y, Yu Y (2021) In situ photo-crosslinking hydrogel with rapid healing, antibacterial, and hemostatic activities. E-Polymers 21(1):606–615

    Article  CAS  Google Scholar 

  • Rafigh SM, Heydarinasab A (2017) Mesoporous chitosan-SiO2 nanoparticles: synthesis, characterization and CO2 adsorption capacity. ACS Sustain Chem Eng 5(11):10379–10386

    Article  CAS  Google Scholar 

  • Reddy DHK, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Coll Interface Sci 201–202:68–93

    Article  Google Scholar 

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    Article  CAS  Google Scholar 

  • Saepudin E, Fadhilah HR, Khalil M (2020) The influence of carboxylate moieties for efficient loading and pH-controlled release of doxorubicin in Fe3O4 magnetic nanoparticles. Colloids Surf A Physicochem Eng Aspects 602:125137

    Article  CAS  Google Scholar 

  • Schneider C, Gordon ON, Edwards RL, Luis PB (2015) Degradation of curcumin: from mechanism to biological implications. J Agric Food Chem 63(35):7606–7614

    Article  CAS  Google Scholar 

  • Shen L, Ji HF (2012) The pharmacology of curcumin: Is it the degradation products? Trends Mol Med 18(3):138–144

    Article  CAS  Google Scholar 

  • Srimal RC, Dhawan BN (1973) Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25(6):447–452

    Article  CAS  Google Scholar 

  • Swanson HE, Morris MC, Stinchfield RP, Evans EH (1962) Standard X-ray diffraction powder patterns. National Bureau of Standards, United States Deparment of Commerve, Washington, D.C.

    Book  Google Scholar 

  • Wang WJ, Cui QY, Qin T, Sun HH (2018) Preparation of Fe3O4@SiO2@chitosan for the adsorption of malachite green dye. IOP Conf Ser Earth and Environmental Science 186(3):012014–012018

    Google Scholar 

  • Wu Y, Yang W, Wang C, Hu J, Fu S (2005) Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm 295(1–2):235–245

    Article  CAS  Google Scholar 

  • Yang D, Gao K, Bai Y, Lei L, Jia T, Yang K, Xue C (2021) Microfluidic synthesis of chitosan-coated magnetic alginate microparticles for controlled and sustained drug delivery. Int J Biol Macromol 182:639–647

    Article  CAS  Google Scholar 

  • Zhang Y, Liu JY, Ma S, Zhang YJ, Zhao X, Zhang XD, Zhang ZD (2010) Synthesis of PVP-coated ultra-small Fe3O4 nanoparticles as a MRI contrast agent. J Mater Sci Mater Med 21:1205–1210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huynh Vu Thanh Luong or Duy Toan Pham.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.Y., Luong, H.V.T., Pham, D.T. et al. Chitosan-functionalized Fe3O4@SiO2 nanoparticles as a potential drug delivery system. Chem. Pap. 76, 4561–4570 (2022). https://doi.org/10.1007/s11696-022-02189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02189-x

Keywords

Navigation