Skip to main content
Log in

Preparation of Amino-Functionalized β-Cyclodextrin/Fe3O4@SiO2 Magnetic Nanocarrier for Controlled Release of Doxorubicin, an Anticancer Drug

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The cyclic oligosaccharide β-cyclodextrin (β-CD) can be widely employed for the preparation of controlled drug delivery systems. Hence, we synthesized a novel β-CD-based magnetic nanocarrier with superparamagnetic and molecular recognition properties for the controlled release of doxorubicin (DOX) drug. The magnetic nanocarrier was prepared by using a facile ultrasonic-assisted method and through surface reversible addition fragmentation chain transfer copolymerization of core–shell Fe3O4@SiO2 nanoparticles onto vinylated β-CD. The spherical amino-functionalized Fe3O4@SiO2 nanomaterials were synthesized easily by a co-condensation green reaction between Fe3O4 nanoparticles with tetraethyl orthosilicate and (3-Aminopropyl) trimethoxysilane. In the next age, the structure and composition of the as-prepared magnetic drug delivery nanocarriers were studied by FTIR, SEM, TEM, XRD, and VSM analysis methods. Then, the loading and releasing behaviors of DOX drug have been investigated in detail. The loading of DOX was proved by UV–Vis, SEM, TEM, and Brunauer–Emmett–Teller analysis techniques. The results also exhibited that the drug loading efficiency is found to be dependent on initial drug concentration, β-CD content and temperature. Moreover, the drug loading capacity of magnetic nanocarrier was compared with pure β-CD. Further, it was found that the in vitro release rate of DOX depends on the pH of the physiological solution. In addition, the drug release kinetics data were well fitted to the Higuchi model. Finally, the biological characterizations were tested by MTT assay, which approved the high performance of the magnetic nanocarriers in killing cancerous cells. Due to its unique and distinct advantageous, the synthesized magnetic nanocarriers can be utilized as a potential and promising biodegradable drug carrier for controlled and sustained release of various drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Pechar, M.; Pola, R.; Studenovský, M.; Bláhová, M.; Grosmanová, E.; Dydowiczová, A.; Filipová, M.; Islam, R.; Gao, S.; Fang, J.; Etrych, T.: Polymer nanomedicines with enzymatically triggered activation: a comparative study of in vitro and in vivo anti-cancer efficacy related to the spacer structure. Nanomed. Nanotechnol. Biol. Med. 46, 102597–102608 (2022). https://doi.org/10.1016/j.nano.2022.102597

    Article  Google Scholar 

  2. Kopeček, J.; Yang, J.: Polymer nanomedicines. Adv. Drug Deliv. Rev. 156, 40–64 (2020). https://doi.org/10.1016/j.addr.2020.07.020

    Article  Google Scholar 

  3. Karthikeyan, L.; Sobhana, S.; Yasothamani, V.; Gowsalya, K.; Vivek, R.: Multifunctional theranostic nanomedicines for cancer treatment: recent progress and challenges. Biomed. Eng. Adv. 5, 100082–100098 (2023). https://doi.org/10.1016/j.bea.2023.100082

    Article  Google Scholar 

  4. Lombardo, D.; Kiselev, M.A.; Caccamo, M.T.: Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater. 2019, 1–26 (2019). https://doi.org/10.1155/2019/3702518

    Article  Google Scholar 

  5. Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C.: Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer. 17, 20–37 (2017). https://doi.org/10.1038/nrc.2016.108

    Article  Google Scholar 

  6. Cheng, Z.; Li, M.; Dey, R.; Chen, Y.: Nanomaterials for cancer therapy: current progress and perspectives. J. Hematol. Oncol. 14, 85–91 (2021). https://doi.org/10.1186/s13045-021-01096-0

    Article  Google Scholar 

  7. Tran, S.; DeGiovanni, P.; Piel, B.; Rai, P.: Cancer nanomedicine: a review of recent success in drug delivery. Clin. Transl. Med. 6, 1–21 (2017). https://doi.org/10.1186/s40169-017-0175-0

    Article  Google Scholar 

  8. Bahloul, B.; Castillo-Henríquez, L.; Jenhani, L.; Aroua, N.; Ftouh, M.; Kalboussi, N.; Vega-Baudrit, J.; Mignet, N.: Nanomedicine-based potential phyto-drug delivery systems for diabetes. J. Drug Deliv. Sci. Technol. 82, 104377–104383 (2023). https://doi.org/10.1016/j.jddst.2023.104377

    Article  Google Scholar 

  9. Khot, V.M.; Salunkhe, A.B.; Pricl, S.; Bauer, J.; Thorat, N.D.; Townley, H.: Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discov. Today 26, 724–739 (2021). https://doi.org/10.1016/j.drudis.2020.12.016

    Article  Google Scholar 

  10. Li, J.; Burgess, D.J.: Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment. Acta Pharm. Sin. B. 10, 2110–2124 (2020). https://doi.org/10.1016/j.apsb.2020.05.008

    Article  Google Scholar 

  11. Qiu, Y.: Environment-sensitive hydrogels for drug delivery. Adv. Drug Del. Rev. 53, 321–339 (2011). https://doi.org/10.1016/s0169-409x(01)00203-4

    Article  Google Scholar 

  12. Li, Z.; Du, X.; Cui, X.; Wang, Z.: Ultrasonic-assisted fabrication and release kinetics of two model redox-responsive magnetic microcapsules for hydrophobic drug delivery. Ultrason. Sonochem. 57, 223–232 (2019). https://doi.org/10.1016/j.ultsonch.2019.04.037

    Article  Google Scholar 

  13. Perecin, C.J.; Sponchioni, M.; Auriemma, R.; Cerize, N.N.P.; Moscatelli, D.; Varanda, L.C.: Magnetite nanoparticles coated with biodegradable zwitterionic polymers as multifunctional nanocomposites for drug delivery and cancer treatment. ACS Appl. Nano Mater. 5, 16706–16719 (2022). https://doi.org/10.1021/acsanm.2c03712

    Article  Google Scholar 

  14. Fang, Z.; Pan, S.; Gao, P.; Sheng, H.; Li, L.; Shi, L.; Zhang, Y.; Cai, X.: Stimuli-responsive charge-reversal nano drug delivery system: the promising targeted carriers for tumor therapy. Int. J. Pharm. 575, 118841–118849 (2020). https://doi.org/10.1016/j.ijpharm.2019.118841

    Article  Google Scholar 

  15. Sun, T.; Jiang, C.: Stimuli-responsive drug delivery systems triggered by intracellular or subcellular microenvironments. Adv. Drug Deliv. Rev. 196, 114773–114781 (2023). https://doi.org/10.1016/j.addr.2023.114773

    Article  Google Scholar 

  16. Alsehli, M.: Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: recent advances in drug delivery. Saudi Pharm. J. 28, 255–265 (2020). https://doi.org/10.1016/j.jsps.2020.01.004

    Article  Google Scholar 

  17. Tian, B.; Liu, J.: Smart stimuli-responsive chitosan hydrogel for drug delivery: a review. Int. J. Biol. Macromol. 235, 123902–123909 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123902

    Article  Google Scholar 

  18. Jackson, T.C.; Obiakor, N.M.; Iheanyichukwu, I.N.; Ita, O.O.; Ucheokoro, A.S.: Biotechnology and nanotechnology drug delivery: a review. J. Pharm. Pharmacol. 9, 127–132 (2021). https://doi.org/10.17265/2328-2150/2021.04.001

    Article  Google Scholar 

  19. Khan, I.; Khan, M.; Umar, M.N.; Oh, D.H.: Nanobiotechnology and its applications in drug delivery system: a review. IET Nanobiotechnol. 9, 396–400 (2015). https://doi.org/10.1049/iet-nbt.2014.0062

    Article  Google Scholar 

  20. Crommelin, D.J.; Storm, G.; Jiskoot, W.; Stenekes, R.; Mastrobattista, E.; Hennink, W.E.: Nanotechnological approaches for the delivery of macromolecules. J. Control. Rel. 87, 81–88 (2003). https://doi.org/10.1016/s0168-3659(03)00014-2

    Article  Google Scholar 

  21. Peppas, N.A.: Intelligent therapeutics: biomimetic systems and nanotechnology in drug delivery. Adv. Drug Deliv. Rev. 56, 1529–1531 (2004). https://doi.org/10.1016/j.addr.2004.07.001

    Article  Google Scholar 

  22. Subbiah, R.; Veerapandian, M.; Yun, K.S.: Nanoparticles-functionalization and multifunctional applications in biomedical sciences. Curr. Med. Chem. 17, 4559–4577 (2010). https://doi.org/10.2174/092986710794183024

    Article  Google Scholar 

  23. Ying, Z.; Chan, H.F.; Leong, K.W.: Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65, 104–120 (2013). https://doi.org/10.1016/j.addr.2012.10.003

    Article  Google Scholar 

  24. Li, C.; Wang, J.; Wang, Y.; Jin, Y.: Recent progress in drug delivery. Acta Pharm. Sin. B 9, 1145–1162 (2019). https://doi.org/10.1016/j.apsb.2019.08.003

    Article  Google Scholar 

  25. Edis, Z.; Wang, J.; Waqas, M.K.; Ijaz, M.; Ijaz, M.: Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int. J. Nanomedicine 16, 1313–1330 (2021). https://doi.org/10.2147/IJN.S289443

    Article  Google Scholar 

  26. Massoumi, B.; Mossavi, R.; Motamedi, S.; Derakhshankhah, H.; Vandghanooni, S.; Jayman, M.: Fabrication of a dual stimuli-responsive magnetic nanohydrogel for delivery of anticancer drugs. Drug Dev. Ind. Pharm. 47, 1166–111174 (2021). https://doi.org/10.1080/03639045.2021.1988099

    Article  Google Scholar 

  27. Wang, Y.; Chen, L.; Liu, P.: Biocompatible triplex Ag@SiO2@mTiO2 core–shell nanoparticles for simultaneous fluorescence-SERS bimodal imaging and drug delivery. Chem.: Europ. J. 18, 5935–5943 (2012). https://doi.org/10.1002/chem.201103571

    Article  Google Scholar 

  28. El-Fatyany, A.; Wang, H.; Abd El-atty, S.M.: Efficient framework analysis for targeted drug delivery based on internet of bio-nano things. Arab. J. Sci. Eng. 46, 9965–9980 (2021). https://doi.org/10.1007/s13369-021-05651-2

    Article  Google Scholar 

  29. Baig, N.; Kammakakam, I.; Falath, W.: Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2, 1821–1871 (2021). https://doi.org/10.1039/D0MA00807A

    Article  Google Scholar 

  30. Mirza, A.Z.; Siddiqui, F.A.: Nanomedicine and drug delivery: a mini review. Int. Nano Lett. 4, 94–102 (2014). https://doi.org/10.1007/s40089-014-0094-7

    Article  Google Scholar 

  31. Frey, N.A.; Peng, S.; Cheng, K.; Sun, S.: Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009). https://doi.org/10.1039/B815548H

    Article  Google Scholar 

  32. Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S.: Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 1–43 (2015). https://doi.org/10.1088/1468-6996/16/2/023501

    Article  Google Scholar 

  33. Khan, I.; Khalil, A.; Khanday, F.; Shemsi, A.M.; Qurashi, A.; Siddiqui, K.S.: Synthesis, characterization and applications of magnetic iron oxide nanostructures. Arab. J. Sci. Eng. 43, 43–61 (2018). https://doi.org/10.1007/s13369-017-2835-1

    Article  Google Scholar 

  34. Zhu, J.; He, J.; Du, X.; Lu, R.; Huang, L.; Ge, X.: A facile and flexible process of β-cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host-guest inclusion studies. Appl. Surf. Sci. 257, 9056–9062 (2011). https://doi.org/10.1016/J.APSUSC.2011.05.099

    Article  Google Scholar 

  35. Gupta, A.K.; Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4002 (2015). https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  36. Ulbrich, K.; Holá, K.; Šubr, V.; Tuček, J.; Zbořil, R.: Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116, 5338–5431 (2016). https://doi.org/10.1021/acs.chemrev.5b00589

    Article  Google Scholar 

  37. Yan, H.; Zhang, J.; You, C.; Song, Z.; Yu, B.; Shen, Y.: Surface modification of Fe3O4 nanoparticles and their magnetic properties. Int. J. Miner. Metall. Mater. 16, 226–229 (2009). https://doi.org/10.1016/S1674-4799(09)60038-8

    Article  Google Scholar 

  38. Gupta, A.K.; Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4201 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  39. Ding, H.L.; Zhang, Y.X.; Wang, S.; Xu, J.M.; Xu, S.C.; Li, G.H.: Fe3O4@SiO2 Core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem. Mater. 24, 4572–4580 (2012). https://doi.org/10.1021/cm302828d

    Article  Google Scholar 

  40. Chae, H.S.; Kim, D.; Piao, S.H.; Choi, H.J.: Core-shell structured Fe3O4@SiO2 nanoparticles fabricated by sol-gel method and their magnetorheology. Colloid Polym. Sci. 94, 647–655 (2016). https://doi.org/10.1007/s00396-015-3818-y

    Article  Google Scholar 

  41. Hui, C.; Shen, C.; Tian, J.; Bao, J.; Ding, L.; Li, H.; Tian, C.; Shi, Y.; Gao, X.: Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3, 701–705 (2011). https://doi.org/10.1039/C0NR00497A

    Article  Google Scholar 

  42. Abeer, M.M.; Rewatkar, P.; Qu, Z.; Talekar, M.; Kleitz, F.; Schmid, R.; Lindén, M.; Kumeria, T.; Popat, A.: Silica nanoparticles: a promising platform for enhanced oral delivery of macromolecules. J. Control. Release 326, 544–555 (2020). https://doi.org/10.1016/j.jconrel.2020.07.021

    Article  Google Scholar 

  43. Ding, C.; Guo, Z.; Xiong, J.: Rational design of a multi-responsive drug delivery platform based on SiO2@PPy@poly(acrylic acid-co-acrylamide). React. Funct. Polym. 137, 88–92 (2019). https://doi.org/10.1016/j.reactfunctpolym.2019.02.002

    Article  Google Scholar 

  44. Li, L.; Gu, Z.; Gu, W.; Liu, L.; Xu, Z.P.: Efficient drug delivery using SiO2-layered double hydroxide nanocomposites. J. Colloid Interf. Sci. 470, 47–55 (2016). https://doi.org/10.1016/j.jcis.2016.02.042

    Article  Google Scholar 

  45. Wang, Y.; Zhang, Z.; Abo-zeid, Y.: SiO2-coated layered gadolinium hydroxides for simultaneous drug delivery and magnetic resonance imaging. J. Solid State Chem. 286, 121291–121235 (2020). https://doi.org/10.1016/j.jssc.2020.121291

    Article  Google Scholar 

  46. Zhu, Y.; Tao, C.: DNA-capped Fe3O4/SiO2 magnetic mesoporous silica nanoparticles for potential controlled drug release and hyperthermia. RSC Adv. 5, 22365–22371 (2015). https://doi.org/10.1039/C5RA00701A

    Article  Google Scholar 

  47. Deng, H.; Lei, Z.: Preparation and characterization of hollow Fe3O4/SiO2@PEG–PLA nanoparticles for drug delivery. Compos. Part B: Eng. 54, 194–199 (2013). https://doi.org/10.1016/j.compositesb.2013.05.010

    Article  Google Scholar 

  48. Liu, X.; Tao, Y.; Mao, H.; Kong, Y.; Shen, J.; Deng, L.; Yang, L.: Construction of magnetic-targeted and NIR irradiation-controlled drug delivery platform with Fe3O4@Au@SiO2 nanospheres. Ceram. Int. 43, 5061–5067 (2017). https://doi.org/10.1016/j.ceramint.2017.01.017

    Article  Google Scholar 

  49. Molaei, M.J.; Salimi, E.: Magneto-fluorescent superparamagnetic Fe3O4@SiO2@alginate/carbon quantum dots nanohybrid for drug delivery. Mater. Chem. Phys. 288, 126361–126269 (2022). https://doi.org/10.1049/mnl.2013.0086

    Article  Google Scholar 

  50. Romdoni, Y.; Kadja, T.M.; Kitamoto, Y.; Khalil, M.: Synthesis of multifunctional Fe3O4@SiO2–Ag nanocomposite for antibacterial and anticancer drug delivery. Appl. Surf. Sci. 610, 155610–155618 (2023). https://doi.org/10.1016/j.apsusc.2022.155610

    Article  Google Scholar 

  51. Toomari, Y.; Namazi, H.; Entezami, A.A.: Synthesis of the dendritic type β-cyclodextrin on primary face via click reaction applicable as drug nanocarrier. Carbohyd. Polym. 132, 205–213 (2015). https://doi.org/10.1016/j.carbpol.2015.05.087

    Article  Google Scholar 

  52. Kanjickal, D.; Lopina, S.; Evancho-Chapman, M.M.; Schmidt, S.; Donovan, D.: Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins. J. Biomed. Mater. Res. Part A 74, 454–460 (2005). https://doi.org/10.1002/jbm.a.30374

    Article  Google Scholar 

  53. Xu, J.; Li, X.; Sun, F.: Cyclodextrin-containing hydrogels for contact lenses as a platform for drug incorporation and release. Acta Biomater. 6, 486–493 (2010). https://doi.org/10.1016/j.actbio.2009.07.021

    Article  Google Scholar 

  54. Machín, R.; Isasi, J.R.; Vélaz, I.: β-Cyclodextrin hydrogels as potential drug delivery systems. Carbohyd. Polym. 87, 2024–2030 (2012). https://doi.org/10.1016/j.carbpol.2011.10.024

    Article  Google Scholar 

  55. Loftsson, T.: Self-assembled cyclodextrin nanoparticles and drug delivery. J. Incl. Phenom. Macrocycl. Chem. 80, 1–7 (2014). https://doi.org/10.1007/s10847-013-0375-1

    Article  Google Scholar 

  56. Chen, Y.Z.: Novel nanoparticles composed of chitosan and β-cyclodextrin derivatives as potential insoluble drug carrier. Chin Chem. Lett. 26, 909–913 (2015). https://doi.org/10.1016/j.cclet.2015.05.044

    Article  Google Scholar 

  57. Liu, C.; Zhang, Z.; Liu, X.: Gelatin-based hydrogels with β-cyclodextrin as a dual functional component for enhanced drug loading and controlled release. RSC Adv. 3, 25041–25049 (2013). https://doi.org/10.1039/C3RA42532K

    Article  Google Scholar 

  58. Ajkidkarn, P.; Ritprajak, P.; Injumpa, W.; Porntaveetus, T.; Insin, N.: Synthesis, characterization, drug release and transdentinal delivery studies of magnetic nanocubes coated with biodegradable poly(2-(dimethyl amino)ethyl methacrylate). J. Magnet. Magnet. Mater. 427, 235–240 (2017). https://doi.org/10.1016/j.jmmm.2016.11.020

    Article  Google Scholar 

  59. Pourjavadi, A.; Tehrani, Z.M.: Poly(N-isopropylacrylamide)-coated β-cyclodextrin-capped magnetic mesoporous silica nanoparticles exhibiting thermal and pH dual response for triggered anticancer drug delivery. Int. J. Polym. Mater. Polym. Biomater. 66, 336–348 (2017). https://doi.org/10.1080/00914037.2016.1217531

    Article  Google Scholar 

  60. Tang, W.; Zhao, J.; Sha, B.; Liu, H.: Adsorption and drug release based on β-cyclodextrin-grafted hydroxyapatite composite. J. Appl. Polym. Sci. 127, 2803–2808 (2013). https://doi.org/10.1002/app.37607

    Article  Google Scholar 

  61. Mbituyimana, B.; Ma, G.; Shi, Z.; Yang, G.: Polymer-based microneedle composites for enhanced non-transdermal drug delivery. Appl. Mater. Today 29, 101659–101667 (2022). https://doi.org/10.1016/j.apmt.2022.101659

    Article  Google Scholar 

  62. Amoyav, B.; Goldstein, Y.; Steinberg, E.: 3D Printed microfluidic devices for drug release assays. Pharmaceutics 13, 13–27 (2021). https://doi.org/10.3390/pharmaceutics13010013

    Article  Google Scholar 

  63. Yadav, H.; Agrawal, R.; Panday, A.; Patel, J.; Maiti, S.: Polysaccharide-silicate composite hydrogels: review on synthesis and drug delivery credentials. J. Drug Deliv. Sci. Technol. 74, 103573–103579 (2022). https://doi.org/10.1016/j.jddst.2022.103573

    Article  Google Scholar 

  64. Wang, F.; Huang, K.; Xu, Z.; Shi, F.; Chen, C.: Self-healable nanocellulose composite hydrogels combining multiple dynamic bonds for drug delivery. Int. J. Biolog. Macromol. 203, 143–152 (2022). https://doi.org/10.1016/j.ijbiomac.2022.01.127

    Article  Google Scholar 

  65. Zhang, X.; An, D.; Zhang, R.; Huang, Y.; Liu, Z.: Preparation of carbon nanotubes and polyhedral oligomeric-reinforced molecularly imprinted polymer composites for drug delivery of gallic acid. Int. J. Pharmac. 615, 121476–121483 (2022). https://doi.org/10.1016/j.ijpharm.2022.121476

    Article  Google Scholar 

  66. Ojagh, S.M.A.; Vahabzadeh, F.; Kari, A.: Synthesis and characterization of bacterial cellulose-based composites for drug delivery. Carbohyd. Polym. 273, 118587–118593 (2021). https://doi.org/10.1016/j.carbpol.2021.118587

    Article  Google Scholar 

  67. Agrahari, V.: Novel drug delivery systems, devices, and fabrication methods. Drug Deliv. Transl. Res. 8, 303–306 (2018). https://doi.org/10.1007/s13346-017-0459-3

    Article  Google Scholar 

  68. Zhaoz, Y.; Qiu, Z.; Huang, J.: Preparation and analysis of magnetic nanoparticles used as targeted-drug carriers. Chin. J. Chem. Eng. 16, 451–455 (2008). https://doi.org/10.1016/S1004-9541(08)60104-4

    Article  Google Scholar 

  69. Nakabayashi, K.; Mori, H.: Recent progress in controlled radical polymerization of N-vinyl monomers. Europ. Polym. J. 49, 2808–2838 (2013). https://doi.org/10.1016/j.eurpolymj.2013.07.006

    Article  Google Scholar 

  70. Pooresmaeil, M.; Namazi, H.: β-Cyclodextrin grafted magnetic graphene oxide applicable as cancer drug delivery agent: synthesis and characterization. Mater. Chem. Phys. 218, 62–69 (2018). https://doi.org/10.1016/j.matchemphys.2018.07.022

    Article  Google Scholar 

  71. Mohamed, M.H.; Wilson, L.D.; Headley, J.V.: Design and characterization of novel β-cyclodextrin based copolymer materials. Carbohyd. Res. 346, 219–229 (2011). https://doi.org/10.1016/j.carres.2010.11.022

    Article  Google Scholar 

  72. BabuL, K.; Reddy, Y.V.: Synthesis and characterization of magnetically core-shell structured CoFe2O4/SiO2 nanoparticles; their enhanced antibacterial and electrocatalytic properties. Colloids Surf. A: Physicochem. Eng. Asp. 598, 124806–124816 (2020). https://doi.org/10.1016/j.colsurfa.2020.124806

    Article  Google Scholar 

  73. Poor Heravi, M.R.; Aghamohammadi, P.; Vessally, E.: Green synthesis and antibacterial, antifungal activities of 4H-pyran, tetrahydro-4H-chromenes and spiro2-oxindole derivatives by highly efficient Fe3O4@SiO2@NH2@Pd(OCOCH3)2 nanocatalyst. J. Mol. Struct. 1249, 131534–131539 (2022). https://doi.org/10.1016/j.molstruc.2021.131534

    Article  Google Scholar 

  74. Abarca, R.L.; Rodríguez, F.J.; Guarda, A.; Galotto, M.J.; Bruna, J.E.: Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 96, 968–975 (2016). https://doi.org/10.1016/j.foodchem.2015.10.023

    Article  Google Scholar 

  75. Zhou, L.; Gao, C.; Hu, X.; Xu, W.: Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers. Langmuir 26, 11217–11225 (2010). https://doi.org/10.1021/la100556p

    Article  Google Scholar 

  76. Taherian, A.; Esfandiari, N.; Rouhani, S.: Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nanotechnol. 12, 15–34 (2021). https://doi.org/10.1186/s12645-021-00086-8

    Article  Google Scholar 

  77. Unsoy, G.; Khodadust, R.; Yalcin, S.; Mutlu, P.; Gunduz, U.: Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur. J. Pharm. Sci. 62, 243–250 (2014). https://doi.org/10.1016/j.ejps.2014.05.021

    Article  Google Scholar 

  78. Shirke, Y.M.; Abou-Elanwar, A.M.; Kwon, S.J.: Development of nanocomposite membranes based on sulfated β-cyclodextrin/glutaraldehyde with magnetically recoverable magnetite-carbon dot hybrid nanoparticles for water vapor dehumidification. J. Environ. Chem. Eng. 10, 107042–107049 (2022). https://doi.org/10.1016/j.jece.2021.107042

    Article  Google Scholar 

  79. Wang, H.; Zhang, C.; Zhang, X.: Construction of Fe3O4@β-CD/g-C3N4 nanocomposite catalyst for degradation of PCBs in wastewater through photodegradation and heterogeneous Fenton oxidation. Chem. Eng. J. 429, 132445–1322457 (2022). https://doi.org/10.1016/j.cej.2021.132445

    Article  Google Scholar 

  80. Bosu, S.; Rajamohan, N.; Rajasimman, M.: Enhanced remediation of lead (II) and cadmium (II) ions from aqueous media using porous magnetic nanocomposites-a comprehensive review on applications and mechanism. Environ. Res. 213, 113720–113729 (2022). https://doi.org/10.1016/j.envres.2022.113720

    Article  Google Scholar 

  81. Li, J.; Shen, S.; Kong, F.; Jiang, T.; Tang, C.; Yin, C.: Effects of pore size on in vitro and in vivo anticancer efficacies of mesoporous silica nanoparticles. RSC Adv. 8, 24633–24640 (2018). https://doi.org/10.1039/C8RA03914C

    Article  Google Scholar 

  82. Li, Z.; Liu, D.; Cai, Y.; Wang, Y.; Teng, J.: Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses. Fuel 257, 116031–116043 (2019). https://doi.org/10.1016/j.fuel.2019.116031

    Article  Google Scholar 

  83. Rasouli, S.; Davaran, S.; Rasouli, F.: Synthesis, characterization and pH-controllable methotrexate release from biocompatible polymer/silica nanocomposite for anticancer drug delivery. Drug Deliv. 21, 155–163 (2013). https://doi.org/10.3109/10717544.2013.838714

    Article  Google Scholar 

  84. Fu, Y.; Kao, W.J.: Drug release kinetics and transport mechanisms of nondegradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 7, 429–444 (2010). https://doi.org/10.1517/17425241003602259

    Article  Google Scholar 

  85. Modi, S.; Anderso, B.D.: Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol. Pharmac. 10, 3076–3089 (2013). https://doi.org/10.1021/mp400154a

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Hosseinzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, H., Jahanbakhsh, Z., Masoumi, B. et al. Preparation of Amino-Functionalized β-Cyclodextrin/Fe3O4@SiO2 Magnetic Nanocarrier for Controlled Release of Doxorubicin, an Anticancer Drug. Arab J Sci Eng 49, 459–473 (2024). https://doi.org/10.1007/s13369-023-08202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08202-z

Keywords

Navigation