Skip to main content
Log in

Comparison of single-stage and gradual reduction milling on pulse flour quality

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Driven by the food industry’s need for balanced and versatile flour ingredients, the shift towards replacing starch-rich cereal flour with protein-rich pulse alternatives is gaining popularity among millers. This trend aligns well with the increasing consumer interest in nutritional value, product quality, and environmentally sustainable protein alternatives. Indeed, pulse flour quality is influenced by flour milling methods and pulse types. Therefore, the relationship between the flour milling process parameters and pulse flour quality should be explored to help establish standardized milling methods and improve end-product quality. To this end, the current study evaluated the effects of a single-stage mill (Ferkar mill) and a gradual reduction mill (roller mill) on the techno-functional quality of flour obtained from green lentils, chickpeas, yellow peas, and navy beans. The quality of pulse flour was evaluated by measuring moisture content, ash content, water-holding capacity (WHC), colour, and particle size distribution under both milling methods. The influence of the overall protein and starch contents of pulse flours on these quality metrics was also studied. The results indicate that while ash content generally showed marginal differences between the two milling methods, WHC demonstrated some significant variations (about 10–60%), depending on the pulse type and milling method. The ash content of flours from different pulse types was not significantly different from each other, except for navy bean, which had about 50% more ash than other pulses irrespective of the milling method. Colour contrasts were evident, especially in lentil flours. Milling methods often provided significantly different particle size distributions regardless of pulse type. These insights underscore the milling effects on pulses and their implications on protein-starch interactions, aiding in refining milling processes to produce tailored pulse ingredients for innovative food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article. The raw/derived data supporting the results of this study are available from the corresponding author on request.

References

  1. M.W. Vasconcelos, M.A. Grusak, E. Pinto, A. Gomes, H. Ferreira, B. Balázs, T. Centofanti, G. Ntatsi, D. Savvas, A. Karkanis, M. Williams, A. Vandenberg, L. Toma, S. Shrestha, F. Akaichi, C.O. Barrios, S. Gruber, E.K. James, M. Maluk, A. Karley, P. Iannetta, in The Plant Family Fabaceae, edited by M. Hasanuzzaman, S. Araújo, and S. GillSpringer Singapore, (2020)

  2. N.P. Singh, A. Pratap, in Biofortification of Food Crops, edited by C. S. and S. S. S. and S. N. P. Singh Ummed and PraharajSpringer India, New Delhi, (2016), pp. 41–50

  3. A.N. Mudryj, N. Yu, T.J. Hartman, D.C. Mitchell, F.R. Lawrence, H.M. Aukema, Br. J. Nutr. 108, S27 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. D.C. Mitchell, C.P.F. Marinangeli, S. Pigat, F. Bompola, J. Campbell, Y. Pan, J.M. Curran, D.J. Cai, S.Y. Jaconis, J. Rumney, Nutrients 2021, Vol. 13, Page 2668 13, 2668 (2021)

  5. S. Havemeier, J. Erickson, J. Slavin, Ann. N Y Acad. Sci. 1392, 58 (2017)

    Article  PubMed  Google Scholar 

  6. J. Garden-Robinson, Pulses: The Perfect Food, Healthy to Eat, Healthy to Grow; Peas-Lentils-Chickpeas (2017)

  7. P.K. Lukus, K.M. Doma, A.M. Duncan, Am. J. Lifestyle Med. 14, 571 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  8. J. Curran, M. McLachlan, R. Black, I. Widders, M. Manary, Ann. N Y Acad. Sci. 1392, 3 (2017)

    Article  PubMed  Google Scholar 

  9. J. Rajiv, A.A. Milind, S. Inamdar, Sakhare, G. Venkateswara Rao, J. Food Sci. Technol. 52, 2464 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. K. Venkatachalam, M. Nagarajan, Ital. J. Food Sci. 29, 2017 (2017)

    Google Scholar 

  11. S. Du, H. Jiang, X. Yu, J. Jane, LWT - Food Sci. Technol. 55, 308 (2014)

    Article  CAS  Google Scholar 

  12. Y.L. Ettoumi, Int. Food Res. J. 22, 987 (2015)

    Google Scholar 

  13. S. Gupta, G.S. Chhabra, C. Liu, J.S. Bakshi, S.K. Sathe, J. Food Sci. 83, 2052 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. J. Jay, J.A.M. Han, Janz, M. Gerlat, Food Res. Int. 43, 627 (2010)

    Article  Google Scholar 

  15. K. Laleg, D. Cassan, C. Barron, P. Prabhasankar, V. Micard, PLoS One. 11, e0160721 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  16. L. Malcolmson, G. Boux, A.-S. Bellido, P. Frohlich, Cereal Foods World. 58, 27 (2013)

    Article  Google Scholar 

  17. M.G. Scanlon, R.T. Tyler, A. Milani, T. Der, J. Paliwal, Cereal Foods World. 63, 201 (2018)

    CAS  Google Scholar 

  18. S. Thakur, M.G. Scanlon, R.T. Tyler, A. Milani, J. Paliwal, Compr. Rev. Food Sci. Food Saf. 18, 775 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. J.A. Wood, L.J. Malcolmson, Pulse Foods: Process. Qual. Nutraceutical Appl. 213 (2021)

  20. H. Maskus, L. Bourré, S. Fraser, A. Sarkar, L. Malcolmson, Cereal Foods World. 61, 59 (2016)

    Article  CAS  Google Scholar 

  21. L. Bourré, P. Frohlich, G. Young, Y. Borsuk, E. Sopiwnyk, A. Sarkar, M.T. Nickerson, Y. Ai, A. Dyck, L. Malcolmson, Cereal Chem. 96, 655 (2019)

    Article  Google Scholar 

  22. B. Guldiken, A. Franczyk, L. Boyd, N. Wang, K. Choo, E. Sopiwnyk, J. House, J. Paliwal, M. Nickerson, Eur. Food Res. Technol. 248, 1847 (2022)

    Article  CAS  Google Scholar 

  23. C. Sivakumar, M.M.A. Chaudhry, M. Nadimi, J. Paliwal, J. Courcelles, Powder Technol. 409, 117803 (2022)

    Article  CAS  Google Scholar 

  24. B. Guldiken, A. Franczyk, L. Boyd, N. Wang, K. Choo, E. Sopiwnyk, J.D. House, J. Paliwal, M. Nickerson, Cereal Chem. 99, 218 (2022)

    Article  CAS  Google Scholar 

  25. K. Choo, R.P. Ramachandran, E. Sopiwnyk, J. Paliwal, Food Bioproc Tech. 15, 1311 (2022)

    Article  CAS  Google Scholar 

  26. AACCI, Approved Methods of Analysis, in AACC International Method 44-15.02. Moisture – Air-Oven Methods. Approved November 3, 1999 (11th Edn.)., (AACC International, 1999)

  27. AACCI, Approved Methods of Analysis, in AACC Approved Method 08-01.01. Ash – Basic Method. Approved November 3, 1999 (11th Edn.)., (1999)

  28. S.-L. Jan, G. Shieh, Br. J. Math. Stat. Psychol. 67, 72 (2014)

    Article  PubMed  Google Scholar 

  29. S.D. Sakhare, A.A. Inamdar, S.B. Gaikwad, I D V R G J. Food Sci. Technol. 51, 3854 (2014)

    CAS  Google Scholar 

  30. T. Otto, B.-K. Baik, Z. Czuchajowska, Cereal Chem. J. 74, 141 (1997)

    Article  CAS  Google Scholar 

  31. R. Kosson, Z. Czuchajowska, Y. Pomeranz, J. Agric. Food Chem. 42, 96 (1994)

    Article  CAS  Google Scholar 

  32. X. Xiong, C. Liu, M. Song, X. Zheng, Food Sci. Nutr. 9, 4927 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. Bouchard, M. Malalgoda, J. Storsley, L. Malunga, T. Netticadan, S.J. Thandapilly, Molecules 27, (2022)

  34. S.D. Sakhare, A.A. Inamdar, S.B. Gaikwad, I. D, and, V.R. G, J. Food Sci. Technol. 51, 3854 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. A. Pallares Pallares, S. Gwala, K. Pälchen, D. Duijsens, M. Hendrickx, T. Grauwet, Compr. Rev. Food Sci. Food Saf. 20, 1524 (2021)

    Article  PubMed  Google Scholar 

  36. L. Zhong, Z. Fang, M.L. Wahlqvist, G. Wu, J.M. Hodgson, S.K. Johnson, Trends Food Sci. Technol. 80, 35 (2018)

    Article  CAS  Google Scholar 

  37. C. Cappa, J.D. Kelly, P.K.W. Ng, Food Chem. 253, 305 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. A.A. Noor Aziah, C.A. Komathi, J. Food Sci. 74, S328 (2009)

    CAS  PubMed  Google Scholar 

  39. J. Ahmed, A. Taher, M.Z. Mulla, A. Al-Hazza, G. Luciano, J. Food Eng. 186, 34 (2016)

    Article  Google Scholar 

  40. P. Kethireddipalli, Y.C. Hung, K.H. McWatters, R.D. Philips, J. Food Sci. 67, 48 (2002)

    Article  CAS  Google Scholar 

  41. D. Zhygunov, H. Zhyhunova, J. Liu, F. Wang, X. Liu, Z. Wang, X. Li, Grain Prod. Mixed Fodder’s. 23, 89 (2023)

    Google Scholar 

  42. Y. Borsuk, S. Arntfield, O.M. Lukow, K. Swallow, L. Malcolmson, J. Sci. Food Agric. 92, 2055 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. M.J. Kang, M.J. Kim, H.S. Kwak, S.S. Kim, J Food Qual 2019, 1 (2019)

  44. Saskatchewan Pulse Growers, (2018)

  45. J.C. Motte, R. Tyler, A. Milani, J. Courcelles, T. Der, Legume Sci. 3, e97 (2021)

    Article  CAS  Google Scholar 

  46. C. Maaroufi, J.-P. Melcion, F. de Monredon, B. Giboulot, D. Guibert, M.-P. Guen, Anim Feed Sci Technol 85, 61 (2000)

  47. G. Xu, J. Kang, W. You, R. Li, H. Zheng, L. Lv, Q. Zhang, Food Hydrocoll. 139, 108566 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Pulse Cluster of the Canadian Agricultural Partnership’s AgriScience Program and the Natural Sciences and Engineering Research Council of Canada’s Discovery Grant program for financial support. We also thank the Canada Foundation for Innovation for infrastructural support and the Canadian International Grains Institute for milling the samples. Sincere thanks to Ms. Lindsey Boyd (Technologist, Pulse Science Cluster, Cereals Canada, Winnipeg, Canada), Dr. Ning Wang (Research Scientist, Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Canada), and Mr. Ashok Sarkar (Senior Advisor, Technology, Cereals Canada, Winnipeg, Canada) for their input.

Author information

Authors and Affiliations

Authors

Contributions

Kristin Choo: Data curation, formal analysis, methodology, investigation, visualization, and writing of the original draft; Rani Puthukulangara Ramachandran: formal analysis, conceptualization, investigation, visualization, and writing the original draft (supporting), review, and editing of the original draft, and supervision (supporting); Elaine Sopiwnyk: conceptualization, resources, supervision, project administration, and review and editing of the original draft; Mohammad Nadimi: validation, review and editing; Filiz Koksel: validation, review and editing; Jitendra Paliwal: conceptualization, funding acquisition, resources, supervision, project administration, and review and editing of the original draft.

Corresponding author

Correspondence to Jitendra Paliwal.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choo, K., Ramachandran, R.P., Nadimi, M. et al. Comparison of single-stage and gradual reduction milling on pulse flour quality. Food Measure (2024). https://doi.org/10.1007/s11694-024-02568-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02568-w

Keywords

Navigation