Skip to main content
Log in

Prediction method of large yellow croaker (Larimichthys crocea) freshness based on improved residual neural network

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Conventional evaluation of fish freshness based on physiological and biochemical methods was destructive, complicated and costly. In this study, the new model was trained on the eye images of 100 large yellow croakers along with their total volatile basic nitrogen (TVB-N) value as freshness indicators in the storage of nine consecutive days at 4 °C. The experiment was divided into three stages (0–2 days, 3–6 days, and 7–8 days) based on TVB-N value, about 1000 images in each stage were used for freshness classification. A non-destructive and rapid fish freshness detection method based on the eye region images of large yellow croaker was proposed by mathematical modeling. The features of large yellow croaker images were extracted automatically by ResNet-34 structure, and then the key extracted feature was focused on the pupil of the fish eye by mixed attention mechanism. Finally, the features of pupil were used to classify the freshness of large yellow croaker. The results showed the accuracy of the model to classify the fish freshness was reached to 99.4%. The model constructed based on the eye images was non-destructive, and could well monitor and distinguish the freshness of large yellow croakers at different storage stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Huang, X. Lu, L. Zhang et al., Insight into the emulsifying properties of DHA-enriched phospholipids from large yellow croaker (Larimichthys Crocea) roe. LWT 150, 111984 (2021). https://doi.org/10.1016/j.lwt.2021.111984

    Article  CAS  Google Scholar 

  2. W. Lan, L. Liu, N. Zhang et al., Effects of ε-polylysine and Rosemary extract on the quality of large yellow croaker (Pseudosciaena crocea) stored on ice at 4 ± 1°C. J. Food Biochem. (2020). https://doi.org/10.1111/jfbc.13418

    Article  PubMed  Google Scholar 

  3. L. Wu, H. Pu, D. Sun et al., Novel techniques for evaluating freshness quality attributes of fish: a review of recent developments. Trends Food Sci. Technol. 83, 259–273 (2019). https://doi.org/10.1016/j.tifs.2018.12.002

    Article  CAS  Google Scholar 

  4. D. Li, L. Zhang, S. Song et al., The role of microorganisms in the degradation of adenosine triphosphate (ATP) in chill-stored common carp (Cyprinus Carpio) fillets. Food Chem. 224, 347–352 (2017). https://doi.org/10.1016/j.foodchem.2016.12.056

    Article  CAS  PubMed  Google Scholar 

  5. J. Zhang, G. Zhou, S. Ji et al., Effect of pulse light on the quality of refrigerated (4 °C) large yellow croaker (Pseudosciaena Crocea). LWT 167, 113855 (2022). https://doi.org/10.1016/j.lwt.2022.113855

    Article  CAS  Google Scholar 

  6. S. Sampels, The effects of processing technologies and preparation on the final quality of fish products. Trends Food Sci. Technol. 44(2), 131–146 (2015). https://doi.org/10.1016/j.tifs.2015.04.003

    Article  CAS  Google Scholar 

  7. C. Tan, Y. Huang, J. Feng et al., Freshness assessment of intact fish via 2D 1H j-resolved NMR spectroscopy combined with pattern recognition methods. Sens. Actuators B Chem. 255, 348–356 (2018). https://doi.org/10.1016/j.snb.2017.08.060

    Article  CAS  Google Scholar 

  8. F. Fazial, L. Tan, Phenylalanine-responsive fluorescent biosensor based on graphene oxide-chitosan nanocomposites catalytic film for non-destructive fish freshness grading. Food Control 125, 107995 (2021)

    Article  CAS  Google Scholar 

  9. D. Agüeria, P. Sanzano, P. Vaz-Pires et al., Development of quality index method scheme for common carp (Cyprinus carpio) stored in ice: shelf-life assessment by physicochemical, microbiological, and sensory quality indices. J. Aquat. Food Prod. Technol. 25(5), 708–723 (2016). https://doi.org/10.1080/10498850.2014.919975

    Article  CAS  Google Scholar 

  10. L.F. Fuentes-Amaya, S. Munyard, J. Fernandez-Piquer et al., Sensory, Microbiological and chemical changes in vacuum-packaged blue spotted emperor (Lethrinus Sp), saddletail snapper (Lutjanus malabaricus), crimson snapper (Lutjanus erythropterus), barramundi (Lates calcarifer) and atlantic salmon (Salmo salar) fillets stored at 4°C. Food Sci. Nutr. 4(3), 479–489 (2016). https://doi.org/10.1002/fsn3.309

    Article  PubMed  Google Scholar 

  11. C. Shi, J. Qian, S. Han et al., developing a machine vision system for simultaneous prediction of freshness indicators based on tilapia (Oreochromis niloticus) pupil and gill color during storage at 4°C. Food Chem. 243, 134–140 (2018). https://doi.org/10.1016/j.foodchem.2017.09.047

    Article  CAS  PubMed  Google Scholar 

  12. S. Kunjulakshmi, S. Harikrishnan, S. Murali et al., development of portable, non-destructive freshness indicative sensor for indian mackerel (Rastrelliger kanagurta) stored under ice. J. Food Eng. 287, 110132 (2020). https://doi.org/10.1016/j.jfoodeng.2020.110132

    Article  CAS  Google Scholar 

  13. Z. Jia, M. Li, C. Shi et al., Determination of salmon freshness by computer vision based on eye color. Food Packag. Shelf Life 34, 100984 (2022). https://doi.org/10.1016/j.fpsl.2022.100984

    Article  Google Scholar 

  14. A. Banwari, R.C. Joshi, N. Senga et al., Computer vision technique for freshness estimation from segmented eye of fish image. Ecol. Inform. 69, 101602 (2022). https://doi.org/10.1016/j.ecoinf.2022.101602

    Article  Google Scholar 

  15. M. Arora, P. Mangipudi, M.K. Dutta, A low-cost imaging framework for freshness evaluation from multifocal fish tissues. J. Food Eng 314, 110777 (2022). https://doi.org/10.1016/j.jfoodeng.2021.110777

    Article  Google Scholar 

  16. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  17. A. Salman, A. Jalal, F. Shafait et al., Fish species classification in unconstrained underwater environments based on deep learning: fish classification based on deep learning. Limnol. Oceanogr. Methods 14(9), 570–585 (2016). https://doi.org/10.1002/lom3.10113

    Article  Google Scholar 

  18. R. Zhao, R. Yan, Z. Chen et al., Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 115, 213–237 (2019). https://doi.org/10.1016/j.ymssp.2018.05.050

    Article  Google Scholar 

  19. J. Xu, R. Ma, S. Stankovski et al., Intelligent dynamic quality prediction of chilled chicken with integrated IoT flexible sensing and knowledge rules extraction. Foods 11(6), 836 (2022). https://doi.org/10.3390/foods11060836

    Article  PubMed  PubMed Central  Google Scholar 

  20. R. Saeed, H. Feng, X. Wang et al., Fish quality evaluation by sensor and machine learning: a mechanistic review. Food Control 137, 108902 (2022). https://doi.org/10.1016/j.foodcont.2022.108902

    Article  CAS  Google Scholar 

  21. Y. Zhang, X. Xiao, H. Feng et al., Stress fusion evaluation modeling and verification based on non-invasive blood glucose biosensors for live fish waterless transportation. Front. Sustainable Food Syst. 7, 1172522 (2023). https://doi.org/10.3389/fsufs.2023.1172522

    Article  Google Scholar 

  22. M. Wang, B. Wang, R. Zhang et al., Flexible Vis/NIR wireless sensing system for banana monitoring. FQS (2023). https://doi.org/10.1093/fqsafe/fyad025

    Article  Google Scholar 

  23. H. Mohammadi Lalabadi, M. Sadeghi, S.A. Mireei, Fish freshness categorization from eyes and gills color features using multi-class artificial neural network and support vector machines. Aquac. Eng. 90, 102076 (2020). https://doi.org/10.1016/j.aquaeng.2020.102076

    Article  Google Scholar 

  24. Z. Liu, Soft-shell shrimp recognition based on an improved alexnet for quality evaluations. J. Food Eng. 266, 109698 (2020). https://doi.org/10.1016/j.jfoodeng.2019.109698

    Article  Google Scholar 

  25. F. Alenezi, A. Armghan, K. Polat, A multi-stage melanoma recognition framework with deep residual neural network and hyperparameter optimization-based decision support in dermoscopy images. Expert Syst. Appl. 215, 119352 (2023). https://doi.org/10.1016/j.eswa.2022.119352

    Article  Google Scholar 

  26. S. Cui, Y. Zhou, Y. Wang et al., Fish detection using deep learning. Appl. Comput. Intell. Soft Comput. 2020, 1–13 (2020). https://doi.org/10.1155/2020/3738108

    Article  Google Scholar 

  27. S. Villon, D. Mouillot, M. Chaumont et al., A deep learning method for accurate and fast identification of coral reef fishes in underwater images. Ecol. Inform. 48, 238–244 (2018). https://doi.org/10.1016/j.ecoinf.2018.09.007

    Article  Google Scholar 

  28. S. Li, C. Li, Y. Yang et al., Underwater scallop recognition algorithm using improved YOLOv5. Aquac. Eng. 98, 102273 (2022). https://doi.org/10.1016/j.aquaeng.2022.102273

    Article  Google Scholar 

  29. F. Peng, Z. Miao, F. Li et al., S-FPN: a shortcut feature pyramid network for sea cucumber detection in underwater images. Expert Syst. Appl. 182, 115306 (2021). https://doi.org/10.1016/j.eswa.2021.115306

    Article  Google Scholar 

  30. Y. Feng, X. Tao, E.J. Lee, Classification of shellfish recognition based on improved faster R-CNN framework of deep learning. Math. Probl. Eng. 2021, 1–10 (2021). https://doi.org/10.1155/2021/1966848

    Article  Google Scholar 

  31. A. Taheri-Garavand, A. Nasiri, A. Banan et al., Smart deep learning-based approach for non-destructive freshness diagnosis of common carp fish. J. Food Eng. 278, 109930 (2020)

    Article  Google Scholar 

  32. Y. Zhang, C. Wei, Y. Zhong et al., Deep learning detection of shrimp freshness via smartphone pictures. Food Measure. 16, 3868–3876 (2022). https://doi.org/10.1007/s11694-022-01473-4

    Article  Google Scholar 

  33. E.T. Yasin, I.A. Ozkan, M. Koklu, Detection of fish freshness using artificial intelligence methods. Eur. Food Res. Technol. 249, 1979–1990 (2023). https://doi.org/10.1007/s00217-023-04271-4

    Article  CAS  Google Scholar 

  34. M. Yu, X. Ma, H. Guan, Recognition method of soybean leaf diseases using residual neural network based on transfer learning. Ecol. Inform. 76, 102096 (2023). https://doi.org/10.1016/j.ecoinf.2023.102096

    Article  Google Scholar 

  35. A.M. Pérez-Calabuig, S. Pradana-López, S. Lopez-Ortega et al., Application of residual neural networks to detect and quantify milk adulterations. J. Food Compost. Anal. 122, 105427 (2023). https://doi.org/10.1016/j.jfca.2023.105427

    Article  CAS  Google Scholar 

  36. S. Sladojevic, M. Arsenovic, A. Anderla et al., Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 1–11 (2016). https://doi.org/10.1155/2016/3289801

    Article  Google Scholar 

  37. J. Liu, L. Zhang, Y. Li et al., Deep residual convolutional neural network based on hybrid attention mechanism for ecological monitoring of marine fishery. Ecol. Inform. 77, 102204 (2023). https://doi.org/10.1016/j.ecoinf.2023.102204

    Article  Google Scholar 

  38. A. Islam, M.T. Hossan, Y. Jang, Convolutional neural networkscheme–based optical camera communication system for intelligent internet of vehicles. Int. J. Distrib. Sens. Netw. 14(4), 155014771877015 (2018). https://doi.org/10.1177/1550147718770153

    Article  Google Scholar 

  39. W. Ng, B. Minasny, M. Montazerolghaem et al., Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma 352, 251–267 (2019). https://doi.org/10.1016/j.geoderma.2019.06.016

    Article  CAS  Google Scholar 

  40. L. Alzubaidi, M.A. Fadhel, O. Al-Shamma et al., Deep learning models for classification of red blood cells in microscopy images to aid in sickle cell anemia diagnosis. Electronics 9(3), 427 (2020). https://doi.org/10.3390/electronics9030427

    Article  CAS  Google Scholar 

  41. H. Uzen, M. Turkoglu, D. Hanbay, Texture defect classification with multiple pooling and filter ensemble based on deep neural network. Expert Syst. Appl. 175, 114838 (2021). https://doi.org/10.1016/j.eswa.2021.114838

    Article  Google Scholar 

  42. M. Turkoglu, O.F. Alcin, M. Aslan et al., Deep rhythm and long short term memory-based drowsiness detection. Biomed. Signal Process. Control 65, 102364 (2021). https://doi.org/10.1016/j.bspc.2020.102364

    Article  Google Scholar 

  43. S. Benyahia, B. Meftah, O. Lézoray, Multi-features extraction based on deep learning for skin lesion classification. Tissue Cell 74, 101701 (2022). https://doi.org/10.1016/j.tice.2021.101701

    Article  PubMed  Google Scholar 

  44. K. He, X. Zhang, S. Ren, Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE: Las Vegas, NV, USA, 770–778 (2016)

  45. M. Shafiq, Z. Gu, Deep residual learning for image recognition: a survey. Appl. Sci. 12(18), 8972 (2022). https://doi.org/10.3390/app12188972

    Article  CAS  Google Scholar 

  46. A. Sinha, J. Dolz, Multi-Scale Self-guided attention for medical image segmentation. IEEE J. Biomed. Health Inform. 25(1), 121–130 (2021). https://doi.org/10.1109/JBHI.2020.2986926

    Article  PubMed  Google Scholar 

  47. L. Chen, H. Yao, J. Fu et al., The classification and localization of crack using lightweight convolutional neural network with CBAM. Eng. Struct. 275, 115291 (2023). https://doi.org/10.1016/j.engstruct.2022.115291

    Article  Google Scholar 

  48. M. Mehdipour Ghazi, B. Yanikoglu, F. Aptoula, Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 235, 228–235 (2017). https://doi.org/10.1016/j.neucom.2017.01.018

    Article  Google Scholar 

  49. A. Nasiri, A. Taheri-Garavand, Y.D. Zhang, Image-based deep learning automated sorting of date fruit. Postharvest Biol. Technol. 153, 133–141 (2019). https://doi.org/10.1016/j.postharvbio.2019.04.003

    Article  Google Scholar 

  50. M. Farooq, E. Sazonov, Feature extraction using deep learning for food type recognition, in Bioinformatics and biomedical engineering. IWBBIO 2017 lecture notes in computer science. ed. by I. Rojas, F. Ortuño (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-56148-6_41

    Chapter  Google Scholar 

  51. O. Russakovsky, J. Deng, H. Su et al., ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  Google Scholar 

  52. C. Dourado Jr., S. Da Silva, R. Da Nóbrega et al., Deep learning iot system for online stroke detection in skull computed tomography images. Comput. Netw. 152, 25–39 (2019). https://doi.org/10.1016/j.comnet.2019.01.019

    Article  Google Scholar 

  53. A.E.D.A. Bekhit, B.W. Holman, S.G. Giteru et al., Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: a review. Trends Food Sci. Technol. 109, 280–302 (2021). https://doi.org/10.1016/j.tifs.2021.01.006

    Article  CAS  Google Scholar 

  54. M.R. García, M.L. Cabo, J.R. Herrera et al., Smart sensor to predict retail fresh fish quality under ice storage. J. Food Eng. 197, 87–97 (2017). https://doi.org/10.1016/j.jfoodeng.2016.11.006.A

    Article  Google Scholar 

  55. E. Goulas, M.G. Kontominas, Combined effect of light salting, modified atmosphere packaging and oregano essential oil on the shelf-life of sea bream (Sparus aurata): biochemical and sensory attributes. Food Chem. 100(1), 287–296 (2007). https://doi.org/10.1016/j.foodchem.2005.09.045

    Article  CAS  Google Scholar 

  56. J. Debevere, G. Boskou, Effect of modified atmosphere packaging on the TVB/TMA-producing microflora of cod fillets. Int. J. Food Microbiol. 31(1–3), 221–229 (1996). https://doi.org/10.1016/0168-1605(96)01001-X

    Article  CAS  PubMed  Google Scholar 

  57. P. Kulawik, F. Özoğul, R.H. Glew, Quality properties, fatty acids, and biogenic amines profile of fresh tilapia stored in ice. J. Food Sci. 78(7), S1063–S1068 (2013). https://doi.org/10.1111/1750-3841.12149

    Article  CAS  PubMed  Google Scholar 

  58. B. Ye, C. Liu, H. Li et al., The design and application of xylose-lysine based time-temperature indicators for visually monitoring the shelf-life of chilled large yellow croaker. J. Food Eng. 355, 111583 (2023). https://doi.org/10.1016/j.jfoodeng.2023.111583

    Article  CAS  Google Scholar 

  59. Q. Zhang, Z. Hu, Z. Xu et al., Quantitative determination of TVB-N content for different types of refrigerated grass carp fillets using near-infrared spectroscopy combined with machine learning. J. Food Compost. Anal. 126, 105871 (2024). https://doi.org/10.1016/j.jfca.2023.105871

    Article  CAS  Google Scholar 

  60. Y. An, N. Liu, J. Xiong et al., Quality changes and shelf-life prediction of pre-processed snakehead fish fillet seasoned by yeast extract: affected by packaging method and storage temperature. Food Chem. Adv. 3, 100418 (2023). https://doi.org/10.1016/j.focha.2023.100418

    Article  Google Scholar 

  61. Y. Chong, J. Fu, T. Chai et al., Preservation effects and antimicrobial mechanism of ultrasound assisted rosmarinic acid treatment on large yellow croaker during cold storage. Food Biosci. (2023). https://doi.org/10.1016/j.fbio.2023.103455

    Article  Google Scholar 

  62. I.S. Stoknes, H.M. Økland, E. Falch et al., Fatty acid and lipid class composition in eyes and brain from teleosts and elasmobranchs. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 138(2), 183–191 (2004). https://doi.org/10.1016/j.cbpc.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  63. P. Masniyom, Deterioration and shelf-life extension of fish and fishery products by modified atmosphere packaging. Songklanakarin J. Sci. Technol. 33(2), 181–219 (2011)

    CAS  Google Scholar 

  64. J. Chen, D. Zhang, A. Zeb et al., Identification of rice plant diseases using lightweight attention networks. Expert Syst. Appl. 169, 114514 (2021). https://doi.org/10.1016/j.eswa.2020.114514

    Article  Google Scholar 

  65. Y. Lu, X. Wu, P. Liu et al., Rice disease identification method based on improved CNN-BiGRU. Artificial Intelligence in Agriculture. 9, 100–109 (2023). https://doi.org/10.1016/j.aiia.2023.08.005

    Article  Google Scholar 

  66. K. Wang, C. Zhang, R. Wang et al., Quality non-destructive diagnosis of red shrimp based on image processing. J. Food Eng. 357, 111648 (2023). https://doi.org/10.1016/j.jfoodeng.2023.111648

    Article  Google Scholar 

  67. M. Yu, X. Ma, H. Guan et al., A diagnosis model of soybean leaf diseases based on improved residual neural network. Chemometr. Intell. Lab. Syst. 237, 104824 (2023). https://doi.org/10.1016/j.chemolab.2023.104824

    Article  CAS  Google Scholar 

  68. Y. Xu, Y. Zhai, Q. Chen et al., Improved residual network for automatic classification grading of lettuce freshness. IEEE Access 10, 44315–44325 (2022). https://doi.org/10.1109/ACCESS.2022.3169159

    Article  Google Scholar 

Download references

Funding

This work was financially supported by Major Scientific and Technological Innovation Project of Shandong Province (2022CXGC020414), and the Key Research and Development Program of Shandong Province (2021SFGC0701).

Author information

Authors and Affiliations

Authors

Contributions

XW: Methodology, Software, Writing—original draft preparation. ZW: Validation, Methodology, Writing—review and editing. ZW: Methodology, Writing—review and editing. QZ: Validation, Software. QZ: Conception, Validation. HY: Validation. LZ: Methodology, Writing—review and editing, Supervision, Funding acquisition. JC: Investigation, Source. DL: Investigation, Source. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lanlan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, Z., Wang, Z. et al. Prediction method of large yellow croaker (Larimichthys crocea) freshness based on improved residual neural network. Food Measure 18, 2995–3007 (2024). https://doi.org/10.1007/s11694-024-02381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02381-5

Keywords

Navigation