Skip to main content
Log in

The utility of Fourier transform near-infrared spectroscopy to identify geographical origins of Chinese pears

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Consumer trust in fruit industry is partly depended on the labeling of its geographical origin. The accurate label is not only of great significance to consumers and retailers, but also for their brands shaping. This work evaluated the utility of Fourier transform near-infrared spectroscopy (FT-NIRS) in identifying the geographical origins of Chinese pears including Laiyang pear (Pyrus bretschneideri cv. Laiyang), Dangshan pear (Pyrus bretschneideri Rehd. cv. Dangshansuli), and Korla pear (Pyrus sinkiangensis T. T. Yu). FT-NIR spectra of 316 pears from three different geographical origins were obtained in the spectral range of 10,000–4000 cm−1. Preliminary investigation was first conducted based on principal component analysis (PCA) to confirm the similar spectral features of samples within one class, and the results showed that PC1 and PC2 were effective for the identification. Partial least square discriminant analysis (PLS-DA) models based on full spectra indicated that the optimal classification based on second-order derivative (Der2) preprocessed spectra achieved 100% correct classification rates (CCRs) in all datasets. After that, the multivariate selection strategies including two-dimensional correlation spectroscopy (2D-COS), competitive adaptive reweighted sampling (CARS) combined with successive projection algorithm (SPA), and uninformative variable elimination (UVE) combined with SPA were individually optimized for selecting the characteristic wavenumbers from full FT-NIR spectra. On the basis of simplified PLS-DA models establishment, the CCRs in calibration, cross-validation, and prediction sets of the selected CARS-SPA-PLS-DA model achieved 98.58%, 98.11%, and 98.08%, respectively. This research demonstrated that FT-NIRS combined with multivariate analysis can be successfully employed to identify the geographical origins of Chinese pears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Huang, J. Xiong, X. Jiang, K. Chen, D. Hu, Assessment of firmness and soluble solids content of peaches by spatially resolved spectroscopy with a spectral difference technique. Comput. Electron. Agric. 200, 107212 (2022)

    Google Scholar 

  2. M. de Wit, P. Nel, G. Osthoff, M.T. Labuschagne, The effect of variety and location on cactus pear (Opuntia ficus-indica) fruit quality. Plant Foods Hum. Nutr. 5, 136–145 (2010)

    Google Scholar 

  3. D. Liu, E. Wang, G. Wang, G. Ma, Nondestructive determination of soluble solids content, firmness, and moisture content of “Longxiang” pears during maturation using near-infrared spectroscopy. J. Food Process. Preserv. 46(3), e16332 (2022)

    CAS  Google Scholar 

  4. J. Li, Q. Zhang, Y. Cui, J. Yan, J. Cao, Y. Zhao, W. Jiang, Use of UV-C treatment to inhibit the microbial growth and maintain the quality of Yali pear. J. Food Sci. 75(7), M503–M507 (2010)

    CAS  PubMed  Google Scholar 

  5. Y. Yu, Q. Zhang, J. Huang, J. Zhu, J. Liu, Nondestructive determination of SSC in Korla fragrant pear using a portable near-infrared spectroscopy system. Infrared Phys. Technol. 116, 103785 (2021)

    CAS  Google Scholar 

  6. R. Liu, T. Lai, Y. Xu, S. Tian, Changes in physiology and quality of Laiyang pear in long time storage. Sci. Hortic. 150, 31–36 (2013)

    CAS  Google Scholar 

  7. S. Li, X. Su, M. Abdullah, Y. Sun, G. Li, X. Cheng, Y. Lin, Y. Cai, Q. Jin, Effects of different pollens on primary metabolism and lignin biosynthesis in pear. Int. J. Mol. Sci. 19(8), 2273 (2018)

    PubMed  PubMed Central  Google Scholar 

  8. S. Kelly, K. Heaton, J. Hoogewerff, Tracing the geographical origin of food: the application of multi-element and multi-isotope analysis. Trends Food Sci. Technol. 16(12), 555–567 (2005)

    CAS  Google Scholar 

  9. G. Campmajó, L.R. Rodríguez-Javier, J. Saurina, O. Núñez, Assessment of paprika geographical origin fraud by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) fingerprinting. Food Chem. 352, 129397 (2021)

    PubMed  Google Scholar 

  10. H.J. Chien, Y.F. Zheng, W.C. Wang, C.Y. Kuo, Y.M. Hsu, C.C. Lai, Determination of adulteration, geographical origins, and species of food by mass spectrometry. Mass Spectrom. Rev. 42, 2273–2323 (2022)

    PubMed  Google Scholar 

  11. W. Jia, G. Liang, Z. Jiang, J. Wang, Advances in electronic nose development for application to agricultural products. Food Anal. Methods 12, 2226–2240 (2019)

    Google Scholar 

  12. J. Chen, Z. Wang, J. Wu, Q. Wang, X. Hu, Chemical compositional characterization of eight pear cultivars grown in China. Food Chem. 104(1), 268–275 (2007)

    CAS  Google Scholar 

  13. C. Ni, Z. Li, X. Zhang, X. Sun, Y. Huang, L. Zhao, T. Zhu, D. Wang, Online sorting of the film on cotton based on deep learning and hyperspectral imaging. IEEE Access 8, 93028–93038 (2020)

    Google Scholar 

  14. S. Lohumi, S. Lee, H. Lee, B.K. Cho, A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 46(1), 85–98 (2015)

    CAS  Google Scholar 

  15. Y. Huang, R. Lu, K. Chen, Detection of internal defect of apples by a multichannel Vis/NIR spectroscopic system. Postharvest Biol. Technol. 161, 111065 (2020)

    CAS  Google Scholar 

  16. W. Si, J. Xiong, Y. Huang, X. Jiang, D. Hu, Quality assessment of fruits and vegetables based on spatially resolved spectroscopy: a review. Foods 11(9), 1198 (2022)

    PubMed  PubMed Central  Google Scholar 

  17. X. Tian, Q. Wang, J. Li, F. Peng, W. Huang, Non-destructive prediction of soluble solids content of pear based on fruit surface feature classification and multivariate regression analysis. Infrared Phys. Technol. 92, 336–344 (2018)

    CAS  Google Scholar 

  18. F. Wang, C. Zhao, G. Yang, Development of a non-destructive method for detection of the juiciness of pear via VIS/NIR spectroscopy combined with chemometric methods. Foods 9(12), 1778 (2020)

    PubMed  PubMed Central  Google Scholar 

  19. R. Khodabakhshian, B. Emadi, Application of Vis/SNIR hyperspectral imaging in ripeness classification of pear. Int. J. Food Prop. 20(sup3), S3149–S3163 (2017)

    CAS  Google Scholar 

  20. S. Lohumi, C. Mo, J.S. Kang, S.J. Hong, B.K. Cho, Nondestructive evaluation for the viability of watermelon (Citrullus lanatus) seeds using fourier transform near infrared spectroscopy. J. Biosyst. Eng. 38(4), 312–317 (2013)

    Google Scholar 

  21. B. Gaspardo, S. Del Zotto, E. Torelli, S.R. Cividino, G. Firrao, G. Della Riccia, B. Stefanon, A rapid method for detection of fumonisins B1 and B2 in corn meal using Fourier transform near infrared (FT-NIR) spectroscopy implemented with integrating sphere. Food Chem. 135(3), 1608–1612 (2012)

    CAS  PubMed  Google Scholar 

  22. L.E. Rodriguez-Saona, F.S. Fry, M.A. McLaughlin, E.M. Calvey, Rapid analysis of sugars in fruit juices by FT-NIR spectroscopy. Carbohydr. Res. 336(1), 63–74 (2001)

    CAS  PubMed  Google Scholar 

  23. S. Parrini, A. Acciaioli, A. Crovetti, R. Bozzi, Use of FT-NIRS for determination of chemical components and nutritional value of natural pasture. Ital. J. Anim. Sci. 17(1), 87–91 (2018)

    CAS  Google Scholar 

  24. H. Jiang, W. Zhu, Determination of pear internal quality attributes by Fourier transform near infrared (FT-NIR) spectroscopy and multivariate analysis. Food Anal. Methods 6(2), 569–577 (2013)

    Google Scholar 

  25. Y. Ying, Y. Liu, Nondestructive measurement of internal quality in pear using genetic algorithms and FT-NIR spectroscopy. J. Food Eng. 84(2), 206–213 (2008)

    Google Scholar 

  26. D. Schütz, J. Riedl, E. Achten, M. Fischer, Fourier-transform near-infrared spectroscopy as a fast screening tool for the verification of the geographical origin of grain maize (Zea mays L.). Food Control 136, 108892 (2022)

    Google Scholar 

  27. W. Yuan, H. Jiang, M. Sun, Y. Zhou, C. Zhang, H. Zhou, Geographical origin identification of chinese tomatoes using long-wave fourier-transform near-infrared spectroscopy combined with deep learning methods. Food Anal. Methods 16, 664–676 (2023)

    Google Scholar 

  28. G. Ren, S. Wang, J. Ning, R. Xu, Y. Wang, Z. Xing, X. Wang, Z. Zhang, Quantitative analysis and geographical traceability of black tea using Fourier transform near-infrared spectroscopy (FT-NIRS). Food Res. Int. 53(2), 822–826 (2013)

    CAS  Google Scholar 

  29. X. Duan, D. Zhang, L. Nie, H. Zang, Rapid discrimination of geographical origin and evaluation of antioxidant activity of Salvia miltiorrhiza var. alba by Fourier transform near infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 122, 751–757 (2014)

    CAS  Google Scholar 

  30. H. Jiang, X. Jiang, Y. Ru, Q. Chen, L. Xu, H. Zhou, Sweetness detection and grading of peaches and nectarines by combining short-and long-wave Fourier-transform near-infrared spectroscopy. Anal. Lett. 54(7), 1125–1144 (2020)

    Google Scholar 

  31. J.M. Amigo, I. Martí, A. Gowen, Hyperspectral imaging and chemometrics: a perfect combination for the analysis of food structure, composition and quality, in Data Handling in Science and Technology, vol. 28 (Elsevier, 2013), pp. 343–370

  32. D. Granato, J.S. Santos, G.B. Escher, B.L. Ferreira, R.M. Maggio, Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 72, 83–90 (2018)

    CAS  Google Scholar 

  33. M. Barker, W. Rayens, Partial least squares for discrimination. J. Chemom. 17, 166–173 (2003)

    CAS  Google Scholar 

  34. A. Nardecchia, R. Presutto, R. Bucci, F. Marini, A. Biancolillo, Authentication of the geographical origin of “Vallerano” chestnut by near infrared spectroscopy coupled with chemometrics. Food Anal. Methods 13(9), 1782–1790 (2020)

    Google Scholar 

  35. H. Jiang, X. Jiang, Y. Ru, Q. Chen, X. Li, L. Xu, H. Zhou, M. Shi, Rapid and non-destructive detection of natural mildew degree of postharvest Camellia oleifera fruit based on hyperspectral imaging. Infrared Phys. Technol. 123, 104169 (2022)

    Google Scholar 

  36. H. Jiang, W. Yuan, Y. Ru, Q. Chen, J. Wang, H. Zhou, Feasibility of identifying the authenticity of fresh and cooked mutton kebabs using visible and near-infrared hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 282, 121689 (2022)

    CAS  Google Scholar 

  37. I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl. Spectrosc. 47(9), 1329–1336 (1993)

    CAS  Google Scholar 

  38. J. Wu, M. Zareef, Q. Chen, Q. Ouyang, Application of visible-near infrared spectroscopy in tandem with multivariate analysis for the rapid evaluation of matcha physicochemical indicators. Food Chem. 421, 136185 (2023)

    CAS  PubMed  Google Scholar 

  39. H. Li, Y. Liang, Q. Xu, D. Cao, Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 648(1), 77–84 (2009)

    CAS  PubMed  Google Scholar 

  40. V. Centner, D.L. Massart, O.E. de Noord, S. de Jong, B.M. Vandeginste, C. Sterna, Elimination of uninformative variables for multivariate calibration. Anal. Chem. 68, 3851–3858 (1996)

    CAS  PubMed  Google Scholar 

  41. M.C.U. Araujo, T.C.B. Saldanha, R.K.H. Galvao, T. Yoneyama, H.C. Chame, V. Visani, The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 57(2), 65–73 (2001)

    CAS  Google Scholar 

  42. A.C. Dotto, R.S.D. Dalmolin, S. Grunwald, A. ten Caten, W.P. Filho, Two preprocessing techniques to reduce model covariables in soil property predictions by Vis-NIR spectroscopy. Soil Tillage Res. 172, 59–68 (2017)

    Google Scholar 

  43. P. Mishra, D.N. Rutledge, J.M. Roger, K. Wali, H.A. Khan, Chemometric pre-processing can negatively affect the performance of near-infrared spectroscopy models for fruit quality prediction. Talanta 229, 122303 (2021)

    CAS  PubMed  Google Scholar 

  44. T. Fawcett, An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Google Scholar 

  45. A.C. Galvis-Sánchez, J.A. Lopes, I. Delgadillo, A.O. Rangel, Fourier transform near-infrared spectroscopy application for sea salt quality evaluation. J. Agric. Food Chem. 59(20), 11109–11116 (2011)

    PubMed  Google Scholar 

  46. W. Guo, J. Gu, D. Liu, L. Shang, Peach variety identification using near-infrared diffuse reflectance spectroscopy. Comput. Electron. Agric. 123, 297–303 (2016)

    Google Scholar 

  47. S. Sunoj, C. Igathinathane, R. Visvanathan, Nondestructive determination of cocoa bean quality using FT-NIR spectroscopy. Comput. Electron. Agric. 124, 234–242 (2016)

    Google Scholar 

  48. M.D.G. Neves, R.J. Poppi, M.C. Breitkreitz, Authentication of plant-based protein powders and classification of adulterants as whey, soy protein, and wheat using FT-NIR in tandem with OC-PLS and PLS-DA models. Food Control 132, 108489 (2022)

    Google Scholar 

  49. S. Tripathi, H.N. Mishra, A rapid FT-NIR method for estimation of aflatoxin B1 in red chili powder. Food Control 20(9), 840–846 (2009)

    CAS  Google Scholar 

  50. F. Dong, J. Hao, R. Luo, Z. Zhang, S. Wang, K. Wu, M. Liu, Identification of the proximate geographical origin of wolfberries by two-dimensional correlation spectroscopy combined with deep learning. Comput. Electron. Agric. 198, 107027 (2022)

    Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China [Grant Number 32102071], and China Postdocotral Science Foundation [Grant Number 2023M741724].

Author information

Authors and Affiliations

Authors

Contributions

HJ: Methodology, Data curation, Investigation, Validation, Funding acquisition, Writing—original draft. CZ: Conceptualization, Visualization. WY: Supervision, Project administration. YZ: Data curation, Software, Formal analysis. XJ: Methodology. HZ: Conceptualization, Writing—review and editing.

Corresponding author

Correspondence to Xuesong Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Zhang, C., Yuan, W. et al. The utility of Fourier transform near-infrared spectroscopy to identify geographical origins of Chinese pears. Food Measure 18, 2674–2684 (2024). https://doi.org/10.1007/s11694-023-02346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02346-0

Keywords

Navigation