Skip to main content
Log in

Product instability studies of non-centrifugal sugar at different storage conditions

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study was conducted to determine the changes in physico-chemical properties during storage of non-centrifugal sugar (NCS) made in the form of powder and solid blocks. The changes in reducing sugars (RS) and crystallinity were determined as a function of time and ambient conditions. Critical water activity (aw) values of both the forms of NCS were found such that product was stable when stored for 6 months at or below this water activity level. Sorption studies were also conducted for samples with different reducing sugar contents. The NCS samples with less RS, and that in powder form, showed less sorption and higher crystallinity, as compared to NCS with higher RS and made in the form of solid blocks. The reason for the occasional structural collapse of solid blocks was investigated, and the phenomenon was attributed to incomplete crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Included as supplementary material.

References

  1. J.P.V.K. Rao, M. Das, S.K. Das, Effect of moisture content on glass transition and sticky point temperatures of sugarcane, palmyra-palm and date-palm jaggery granules. Int. J. Food Sci. Technol. 45(1), 94–104 (2010). https://doi.org/10.1111/j.1365-2621.2009.02108.x

    Article  CAS  Google Scholar 

  2. A. Nath, D. Dutta, D.P. Kumar, J. Singh, Review on recent advances in value addition of jaggery based products. J. Food Process. Technol. 6(4), 4–7 (2015). https://doi.org/10.4172/2157-7110.1000440

    Article  CAS  Google Scholar 

  3. W.R. Jaffé, Nutritional and functional components of non centrifugal cane sugar: a compilation of the data from the analytical literature. J. Food Compos. Anal. 43, 194–202 (2015). https://doi.org/10.1016/j.jfca.2015.06.007

    Article  CAS  Google Scholar 

  4. J.P.V.K. Rao, M. Das, S.K. Das, Jaggery—a traditional indian sweetener. Indian J. Tradit. Knowl. 6(1), 95–102 (2007)

    Google Scholar 

  5. T.B. Deokate, S.N. Tilekar, Economics of production and marketing of jaggery in Maharashtra. Int. J. Commer. Bus. Manag. 2(2), 68–72 (2010)

    Google Scholar 

  6. T. Deokate, D. Bandgar, B. Mali, Marketing and Export of Jaggery, 1st edn. (Scholars’ Press, Saarbrücken, 2009)

    Google Scholar 

  7. J. Singh, R.D. Singh, S.I. Anwar, S. Solomon, Alternative sweeteners production from sugarcane in India: lump sugar (jaggery). Sugar Tech 13(4), 366–371 (2011). https://doi.org/10.1007/s12355-011-0110-4

    Article  CAS  Google Scholar 

  8. V.K. Verma, M. Narain, Moisture absorption isotherms of jaggery. J. Stored Prod. Res. 26(2), 61–66 (1990). https://doi.org/10.1016/0022-474X(90)90001-9

    Article  Google Scholar 

  9. P. Verma, N. Shah, S.M. Mahajani, Drying characteristics of non-centrifugal sugar. Dry. Technol. (2019). https://doi.org/10.1080/07373937.2019.1684318

    Article  Google Scholar 

  10. P. Verma, N. Shah, S.M. Mahajani, Effects of acid treatment in jaggery making. Food Chem. 299(January), 125094 (2019). https://doi.org/10.1016/j.foodchem.2019.125094

    Article  CAS  PubMed  Google Scholar 

  11. P. Verma, N. Shah, S.M. Mahajani, Effect of sodium hydrosulphite treatment on the quality of non-centrifugal sugar: jaggery. Food Chem. 299, 125043 (2019). https://doi.org/10.1016/j.foodchem.2019.125043

    Article  CAS  PubMed  Google Scholar 

  12. Y.H. Roos, M. Karel, Applying state diagrams to food processing and development. Food Technol. 45(12), 66–107 (1991)

    CAS  PubMed  Google Scholar 

  13. H.M.A. Nayaka, U.V. Sathisha, M.P. Manohar, K.B. Chandrashekar, S.M. Dharmesh, Cytoprotective and antioxidant activity studies of jaggery sugar. Food Chem. 115(1), 113–118 (2009). https://doi.org/10.1016/j.foodchem.2008.11.067

    Article  CAS  Google Scholar 

  14. L. Seguí, L. Calabuig-Jiménez, N. Betoret, P. Fito, Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar. Int. J. Food Sci. Technol. 50(12), 2579–2588 (2015). https://doi.org/10.1111/ijfs.12926

    Article  CAS  Google Scholar 

  15. D.H. Flórez-Martínez, C.A. Contreras-Pedraza, J. Rodríguez, A systematic analysis of non-centrifugal sugar cane processing: research and new trends. Trends Food Sci. Technol. 107, 415–428 (2021). https://doi.org/10.1016/j.tifs.2020.11.011. ISSN 0924-2244

    Article  CAS  Google Scholar 

  16. P. Verma, N. Shah, S.M. Mahajani, Why jaggery powder is more stable than solid jaggery blocks. LWT 110(April), 299–306 (2019). https://doi.org/10.1016/j.lwt.2019.04.093

    Article  CAS  Google Scholar 

  17. G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  18. L. Greenspan, Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. A 81A(1), 89 (1977). https://doi.org/10.6028/jres.081A.011

    Article  MathSciNet  Google Scholar 

  19. S. Singh, A. Dubey, L. Tiwari, A.K. Verma, Microbial profile of stored jaggery: a traditional Indian sweetener. Sugar Tech 11(2), 213–216 (2009). https://doi.org/10.1007/s12355-009-0034-4

    Article  Google Scholar 

  20. R. Ergun, R. Lietha, R.W. Hartel, Moisture and shelf life in sugar confections. Crit. Rev. Food Sci. Nutr. 50(2), 162–192 (2010). https://doi.org/10.1080/10408390802248833

    Article  CAS  PubMed  Google Scholar 

  21. H.O. Hamad, H.M. Alma, H.M. Ismael, A. Goceri, The effect of some sugars on the growth of Aspergillus Niger. KSU J. Nat. Sci. 17(4), 7–11 (2014)

    Google Scholar 

  22. C. Molina-Ramírez, M. Castro, M. Osorio, M. Torres-Taborda, B. Gómez, R. Zuluaga, C. Gómez, P. Gañán, O. Rojas, C. Castro, Effect of different carbon sources on bacterial nanocellulose production and structure using the low PH resistant strain Komagataeibacter medellinensis. Materials (Basel) 10(6), 639 (2017). https://doi.org/10.3390/ma10060639

    Article  CAS  PubMed  ADS  Google Scholar 

  23. T.P. Labuza, Effect of water activity on reaction kinetics of food deterioration. Food Technol. (1980). https://doi.org/10.1016/j.ijfoodmicro.2005.10.002

    Article  Google Scholar 

  24. M.S. Rahman, State diagram of foods: its potential use in food processing and product stability. Trends Food Sci. Technol. 17(3), 129–141 (2006). https://doi.org/10.1016/j.tifs.2005.09.009

    Article  CAS  Google Scholar 

  25. M.A.J.S. van Boekel, Moisture content and water activity relations in honey: a Bayesian multilevel meta-analysis. J. Food Compos. Anal. 123, 105595 (2023). https://doi.org/10.1016/j.jfca.2023.105595. ISSN 0889-1575

    Article  CAS  Google Scholar 

  26. L.R. Beuchat, Influence of water activity on growth, metabolic activities and survival of yeasts and molds. J. Food Prot. 46(2), 135–141 (1983). https://doi.org/10.4315/0362-028X-46.2.135

    Article  PubMed  Google Scholar 

  27. K. Kouassi, Y.H. Roos, Glass transition and water effects on sucrose inversion by invertase in a lactose-sucrose system. J. Agric. Food Chem. 48(6), 2461–2466 (2000). https://doi.org/10.1021/jf9902999

    Article  CAS  PubMed  Google Scholar 

  28. K. Kouassi, Y.H. Roos, Glass transition and water effects on sucrose inversion in noncrystalline carbohydrate food systems. Food Res. Int. 34(10), 895–901 (2001). https://doi.org/10.1016/S0963-9969(01)00114-4

    Article  CAS  Google Scholar 

  29. Y.H. Roos, S. Drusch, Phase Transitions in Foods, 2nd edn. (Elsevier, Killington, 2016). https://doi.org/10.1016/B978-0-12-408086-7.00003-6

    Book  Google Scholar 

  30. V. Guillard, C. Bourlieu, N. Gontard, Relationship between multiscale food structure and moisture transfer properties, in Food Structure and Moisture Transfer, vol. 5 (Springer New York, New York, 2013), pp. 35–44. https://doi.org/10.1007/978-1-4614-6342-9_3

  31. E.J. Quirijns, A.J. van Boxtel, W.K. van Loon, G. van Straten, Sorption isotherms, GAB parameters and isosteric heat of sorption. J. Sci. Food Agric. 85(11), 1805–1814 (2005). https://doi.org/10.1002/jsfa.2140

    Article  CAS  Google Scholar 

  32. Z.B. Maroulis, E. Tsami, D.M. Kouris, G.D. Saravacos, Application of the GAB model to the moisture sorption isotherms for dried fruits. J. Food Eng. 7, 63–78 (1988)

    Article  Google Scholar 

  33. A.K. Shrestha, T. Howes, B.P. Adhikari, B.R. Bhandari, Water sorption and glass transition properties of spray dried lactose hydrolysed skim milk powder. LWT 40(9), 1593–1600 (2007). https://doi.org/10.1016/j.lwt.2006.11.003

    Article  CAS  Google Scholar 

  34. S.J. Schmidt, M.A. Ruiz-Cabrera, C. Rivera-Bautista, A. Grajales-Lagunes, R. González-García, State diagrams for mixtures of low molecular weight carbohydrates. J. Food Eng. 171, 185–193 (2016). https://doi.org/10.1016/j.jfoodeng.2015.10.038

    Article  CAS  Google Scholar 

  35. Y.H. Roos, Melting and glass transitions of low molecular weight carbohydrates. Carbohydr. Res. 238, 39–48 (1993)

    Article  CAS  Google Scholar 

  36. A. Simperler, A. Kornherr, R. Chopra, P. Bonnet, W. Jones, W.D.S. Motherwell, G. Zifferer, Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study. J. Phys. Chem. B 110(39), 19678–19684 (2006). https://doi.org/10.1021/jp063134t

    Article  CAS  PubMed  Google Scholar 

  37. P. Verma, N. Shah, S.M. Mahajani, A novel technique to characterize and quantify crystalline and amorphous matter in complex sugar mixtures. Food Anal. Methods 13, 2087–2101 (2020). https://doi.org/10.1007/s12161-020-01789-1

    Article  Google Scholar 

  38. P. Verma, N. Shah, S.M. Mahajani, Insights into the crystallization phenomenon in the production of non-centrifugal sugar. J. Food Eng. 290, 110259 (2020). https://doi.org/10.1016/j.jfoodeng.2020.110259. ISSN 0260-8774

    Article  CAS  Google Scholar 

  39. B. Bhandari, R. Hartel, Co-crystallization of sucrose at high concentration in the presence of glucose and fructose. J. Food Sci. 67(5), 1797–1802 (2002). https://doi.org/10.1111/j.1365-2621.2002.tb08725.x

    Article  CAS  Google Scholar 

  40. Y. Lu, L.C. Thomas, J.P. Jerrell, K.R. Cadwallader, S.J. Schmidt, Investigating the thermal decomposition differences between beet and cane sucrose sources. J. Food Meas. Charact. (2017). https://doi.org/10.1007/s11694-017-9544-z

    Article  Google Scholar 

  41. M. Hurtta, I. Pitkänen, J. Knuutinen, Melting behaviour of d-sucrose, d-glucose and d-fructose. Carbohydr. Res. 339(13), 2267–2273 (2004). https://doi.org/10.1016/j.carres.2004.06.022

    Article  CAS  PubMed  Google Scholar 

  42. Y.H. Roos, F. Franks, M. Karel, T.P. Labuza, H. Levine, M. Mathlouthi, D. Reid, E. Shalaev, L. Slade, Comment on the melting and decomposition of sugars. J. Agric. Food Chem. 60(41), 10359–10362 (2012). https://doi.org/10.1021/jf3002526

    Article  CAS  PubMed  Google Scholar 

  43. F. Fan, Y.H. Roos, X-ray diffraction analysis of lactose crystallization in freeze-dried lactose-whey protein systems. Food Res. Int. 67, 1–11 (2015). https://doi.org/10.1016/j.foodres.2014.10.023

    Article  CAS  Google Scholar 

  44. M.K. Haque, Y.H. Roos, Crystallization and X-ray diffraction of crystals formed in water-plasticized amorphous spray-dried and freeze-dried lactose/protein mixtures. J. Food Sci. 70(5), E359–E366 (2005). https://doi.org/10.1111/j.1365-2621.2005.tb09977.x

    Article  CAS  Google Scholar 

  45. P. Verma, N. Shah, S.M. Mahajani, Scientific understanding of production of non-centrifugal sugar. J. Sugar Tech 23, 1393–1412 (2021). https://doi.org/10.1007/s12355-021-01006-1

    Article  Google Scholar 

  46. T. Koji, M. Shinta, O. Takashi, I. Hiroyuki, I. Naoyuki, I. Koreyoshi, Water sorption and glass-to-rubber transition of amorphous sugar matrices, vacuum foam- and spray-dried from alcohols. J. Food Eng. 349, 111483 (2023). https://doi.org/10.1016/j.jfoodeng.2023.111483. ISSN 0260-8774

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Tata Centre for Technology and Design, IIT Bombay, for financial support. Authors thank Prof. Ramaswamy C. Anantheswaran, Professor at Food Science & Chair of the Cocoa, Chocolate and Confectionery Research Group, Penn State University, for his inputs. They also thank Mr. Vishwambhar Patil, Mr. Rohit Kumbhar, and the project staff involved in the field trial, for their support in conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay M. Mahajani.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

No living being was part of this study. Ethical approval is not required for this study.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Appendix

Appendix

Figure 9 shows moisture sorption data of powder NCS samples, comparison at different aw.

Fig. 9
figure 9

Change in moisture percent (dry basis) of various powder NCS samples (PJ1, PJ2, PJ3, and PJ4) with time at different humidity environment. Significant difference between the moisture content of samples stored at different water activity at any given time was found to satisfy p < 0.05

Figure 10 shows moisture sorption data of powder NCS samples, comparison among samples at given aw.

Fig. 10
figure 10

Change in moisture content of powder NCS (of varying reducing sugars) with time stored at different aw

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Shah, N.G. & Mahajani, S.M. Product instability studies of non-centrifugal sugar at different storage conditions. Food Measure 18, 1650–1663 (2024). https://doi.org/10.1007/s11694-023-02266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02266-z

Keywords

Navigation