Skip to main content
Log in

Determining the physical stability and water–solid interactions responsible for caking during storage of alpha-anhydrous glucose

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Typically, a crystalline powder is considered reasonably stable below it deliquescence point (RH0), however, caking has been reported for some materials below their RH0. The critical relative humidity (RH) values for caking and hydrate formation in alpha-anhydrous glucose (α-AG) and α-AG partitioned into three particle sizes were assessed using saturated salt slurries ranging from 0 to 84 % RH at 25 °C for 20 weeks. The degree of caking was determined by a five-point visual physical stability scale, from free flowing with minimal clumping (1) to fully caked (5), and X-ray powder diffraction was used to determine the composition of the samples. Caking was observed in α-AG during storage at 68 % RH at 25 °C and the severity of caking increased with increasing RH. Fine particle α-AG caked during storage at 64 % RH, whereas medium and large particle α-AG caked at 68 and 75 % RH, respectively, at 25 °C. Caking was observed in the absence of deliquescence, amorphous content, and hydrate formation; therefore, it is proposed that capillary condensation leads to caking in α-AG below its RH0. Capillary condensation caking occurs at a specific RH (termed RHcc) where direct condensation of moisture into confined spaces, such as particle contact points or surface defects, causes the formation of liquid bridges, which may solidify over time without changes in RH or temperature. To avoid caking, α-AG should be stored below its RHcc, which is highly dependent on particle size; and to avoid conversion to glucose monohydrate, α-AG, regardless of particle size, should be stored below 64 % RH at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Peleg, J. Food Process. Eng. 1, 303–328 (1977)

    Article  Google Scholar 

  2. M. Peleg, in Physical Properties Foods, ed. by M. Peleg, E.B. Bagley (AVI Publishing Company Inc, Westport, 1983), pp. 293–323

    Google Scholar 

  3. E.J. Griffith, Cake Formation in Particulate Systems (VCH Publishers Inc., New York, 1991), pp. 10–237

    Google Scholar 

  4. B.R. Bhandari, R.W. Hartel, in Encapsulated and Powdered Foods, ed. by C. Onwulata (Taylor and Francis, New York, 2005), pp. 261–292

    Chapter  Google Scholar 

  5. P. Juliano, G.V. Barbosa-Cánovas, Annu. Rev. Food Sci. Technol. 1, 211–233 (2010)

    Article  Google Scholar 

  6. L.E. Chuy, T.P. Labuza, J. Food Sci. 59(1), 43–46 (1994)

    Article  CAS  Google Scholar 

  7. H. Rumpf, in Agglomeration, ed. by W. Knepper (Interscience Pubishers, New York, 1962), pp. 379–418

    Google Scholar 

  8. H. Burak, Chem. Ind. 21, 844–846 (1966)

  9. M.P. Bhatt, D.S. Datar, Salt Res. Ind. 5(3/4), 57–67 (1968)

    CAS  Google Scholar 

  10. G.W. White, A.V. Bell, G.K. Berry, J. Food Technol. 2, 45–52 (1967)

    Article  Google Scholar 

  11. B. Roge, M. Mathlouthi, Zuckerindustrie 125(5), 336–339 (2000)

    CAS  Google Scholar 

  12. M. Mathlouthi, B. Roge, Zuckerindustrie 126(11), 880–884 (2001)

    CAS  Google Scholar 

  13. M. Mathlouthi, B. Roge, Food Chem. 82, 61–71 (2003)

    Article  CAS  Google Scholar 

  14. H. Hou, C.C. Sun, J. Pharm. Sci. 97(9), 4030–4039 (2008)

    Article  CAS  Google Scholar 

  15. E. Teunou, J.J. Fitzpatrick, E.C. Synnott, J. Food Eng. 39, 31–37 (1999)

    Article  Google Scholar 

  16. J.J. Fitzpatrick, S.A. Barringer, T. Iqbal, J. Food Eng. 61, 399–405 (2004)

    Article  Google Scholar 

  17. D. Janjatović, M. Benković, S. Srečec, D. Ježek, I. Špoljarić, I. Bauman, Adv. Powder Technol. 23(5), 620–631 (2011)

    Article  Google Scholar 

  18. S.J. Schmidt, Manuf. Confect. 92(1), 79–89 (2012)

    Google Scholar 

  19. J. Bronlund, T. Paterson, Int. Dairy J. 14, 247–254 (2004)

    Article  CAS  Google Scholar 

  20. S.W. Billings, J.E. Bronlund, A.H.J. Paterson, J. Food Eng. 77, 887–895 (2006)

    Article  CAS  Google Scholar 

  21. M. Wahl, U. Bröckel, L. Brendel, H.J. Feise, B. Weigl, M. Röck, J. Schwedes, Powder Technol. 188, 147–152 (2008)

    Article  CAS  Google Scholar 

  22. R.M. Kirsch, R.A. Williams, U. Bröckel, R.B. Hammond, X. Jia, Ind. Eng. Chem. Res. 50(20), 11728–11733 (2011)

    Article  CAS  Google Scholar 

  23. M. Wahl, R. Kirsch, U. Brockel, S. Trapp, M. Bottlinger, Chem. Eng. Technol. 29(6), 674–678 (2006)

    Article  CAS  Google Scholar 

  24. P.J. Mulvihill, in Starch Hydrolysis Products, ed. by F.W. Schench, R.E. Hebeda (VCH Publishers Inc., New York, 1991), pp. 121–176

    Google Scholar 

  25. M. Rüegg, B. Blanc, Lebensmittel-Wissenschaft and Technologie 14(1), 1–6 (1981)

    Google Scholar 

  26. C.G. Peng, A.H.L. Chow, C.K. Chan, Aerosol Sci. Technol. 35(3), 753–758 (2001)

    Article  CAS  Google Scholar 

  27. A.K. Salameh, L.J. Mauer, L.S. Taylor, J. Food Sci. 71(1), E10–E16 (2006)

    Article  CAS  Google Scholar 

  28. S.K. Scholl, S.J. Schmidt, J. Food Sci. (2014). (accepted)

  29. L.N. Bell, T.P. Labuza, Moisture Sorption Practical Aspects of Isotherm Measurement and Use, 2nd edn. (American Association of Cereal Chemists, St. Paul, 2000), pp. 12–45

    Google Scholar 

  30. S.K. Scholl, Investigation of glucose hydrate formation and loss: parameters, mechanisms, and physical stability [DPhil dissertation], (University of Illinois, Urbana-Champaign, 2014), p. 174

  31. Decagon Devices Inc, AquaLab 4 Water Activity Meter Operator’s Man, 4.0th edn. (Decagon Devices Inc, Pullman, 2008), pp. 10–11

    Google Scholar 

  32. A.M. Stoklosa, R.A. Lipasek, L.S. Taylor, L.J. Mauer, Food Res. Int. 49, 783–791 (2012)

    Article  CAS  Google Scholar 

  33. L. Greenspan, J. Res. Natl. Bur. Stand. Phys. Chem. 81A(1), 89–96 (1976)

    Article  Google Scholar 

  34. J.F. Young, J. Appl. Chem. 17, 241–245 (1967)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ingredion Incorporated (Westchester, IL) for providing alpha anhydrous glucose samples and Tate and Lyle (Hoffman Estates, IL) for carrying out the particle size analysis on α-AG samples. XRPD was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois at Urbana-Champaign, IL. Special thanks is given to Dr. Mauro Sardela, MRL Senior Research Scientist, for his expert technical assistance with x-ray diffraction procedures and analysis. Thanks is also given to Roman Kirsch from Dr. Ulrich Bröckel’s Laboratory at the Institute for Micro Process Engineering and Particle Technology at Umwelt-Campus Birkenfeld for feedback on the capillary condensation caking schematic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelly J. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholl, S.K., Schmidt, S.J. Determining the physical stability and water–solid interactions responsible for caking during storage of alpha-anhydrous glucose. Food Measure 8, 326–335 (2014). https://doi.org/10.1007/s11694-014-9193-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-014-9193-4

Keywords

Navigation