Skip to main content
Log in

Effect of drying methods and pre-treatments on bioactive potential of persimmon (Diospyros kaki L.)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this research, persimmon samples (sliced, pureed) were dehydrated by convective (50 and 100 °C) and microwave (100 W) drying techniques with different pre-treatment combinations of sugar addition (25%) and blanching (100 °C, 5 min). Each pre-treatment consisting of sugar addition, slicing, and blanching resulted in a significant increase in color parameters compared to unpretreated samples. Color parameters measured at low drying temperatures were lower than high ones. Also, 100 W dried samples were higher in total anthocyanin content, and the pureed samples were 24.80% higher than sliced ones. The bioactive potential was evaluated regarding extractable, hydrolysable, and bioaccessible phenolic fractions by total phenolic content and ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl) and CUPRAC (Cupric Reducing Antioxidant Capacity) antioxidant capacity assays. (i) 50 °C drying prevailed on drying at 100 °C and 100 W, especially in terms of extractable phenolic fractions and bioaccessible phenolic fractions; (ii) Sliced samples were higher for EPF and BPF, while pureed ones were higher in hydrolysable phenolic fractions; (iii) Blanched samples were relatively higher than unblanched ones in total phenolic content. For antioxidant capacity assays, extractable phenolic fractions were higher in blanched samples and bioaccessible phenolic fractions in unblanched ones (TEACABTS, TEACCUPRAC). (iv) Sugar addition negatively affected the bioactive potential in persimmon samples; no-sugar-added samples were higher, especially in bioaccessible phenolic fractions (p < 0.01; Total phenolic content, TEACABTS, TEACCUPRAC). (v) The CUPRAC assay was the most appropriate method due to providing a view of more statistical distinction by picturing the same potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets used in the current study are available from the corresponding author on reasonable request.

References

  1. J. Kim, I.K. Chung, H.Y. Kim, K. Kim, Comparison of the quality of dried persimmon (Diospyros kaki) treated with medicinal plant extracts and food additives. Food. Sci. Nut. 6(8), 1991–1998 (2018). https://doi.org/10.1002/fsn3.673

    Article  CAS  Google Scholar 

  2. U. Mehra, M. Negi, M. Awasthi, Effect of rooting media and indole-3-butyric acid on rooting of cuttings in persimmon (Diospyros kaki L.) cv. Fuyu. J. Pharmacogn. Phytochem. 8(3), 400–403 (2019)

    CAS  Google Scholar 

  3. C. Conesa, N. Laguarda-Miró, P. Fito, L. Seguí, Evaluation of persimmon (Diospyros kaki Thunb. Cv. Rojo Brillante) industrial residue as a source for value added products. Waste Biomass Valorization 11, 3749–3760 (2020). https://doi.org/10.1007/s12649-019-00621-0

    Article  CAS  Google Scholar 

  4. K. Matsumoto, K. Masuda, K. Takekawa, T. Koyanagi, Influence of heat treatment on the bile acid binding ability of persimmon tannin-rich fiber and its application to a food material for breads. J. Japanese Soc. Food Sci. Technol. 61(11), 543–547 (2014). https://doi.org/10.3136/nskkk.61.543

    Article  Google Scholar 

  5. C.C. Zhao, K. Ameer, J.B. Eun, Effects of various drying conditions and methods on drying kinetics and retention of bioactive compounds in sliced persimmon. LWT Food Sci. Technol. 143, 111149 (2021). https://doi.org/10.1016/j.lwt.2021.111149

    Article  CAS  Google Scholar 

  6. W. Senadeera, G. Adiletta, B. Onal, M. Di Matteo, P. Russo, Influence of different hot air-drying temperatures on drying kinetics, shrinkage, and colour of persimmon slices. Foods 9(1), 101 (2020). https://doi.org/10.3390/foods9010101

    Article  PubMed  PubMed Central  Google Scholar 

  7. I. Alibas, A. Yilmaz, B.B. Asik, H. Erdogan, Influence of drying methods on the nutrients, protein content and vitamin profile of basil leaves. J. Food Compost. Anal. 96, 103758 (2021). https://doi.org/10.1016/j.jfca.2020.103758

    Article  CAS  Google Scholar 

  8. J.L.G. Corrêa, F.J. Lopes, R.E. de Mello Jr, J.R. de Jesusjunqueira, M.C. de Angelis Pereira, L.G.A. Salvio, Dried yacon with high fructooligosaccharide content. J. Food Process. Eng. 44(12), e13884 (2021). https://doi.org/10.1111/jfpe.13884

    Article  CAS  Google Scholar 

  9. L.Z. Deng, A.S. Mujumdar, Q. Zhang, X.H. Yang, Z.A. Zheng, Z.J. Gao, H.W. Xiao, Chemical and physical pretreatments of fruits and vegetables: effects on drying characteristics and quality attributes-a comprehensive review. Crit. Rev. Food Sci. Nutr. 59(9), 1408–1432 (2019). https://doi.org/10.1080/10408398.2017.1409192

    Article  CAS  PubMed  Google Scholar 

  10. R.P. Kingsly, R.K. Goyal, M.R. Manikantan, S.M. Ilyas, Effects of pretreatments and drying air temperature on drying behavior of peach slice. Int. J. Food Sci. Technol. 42, 65–69 (2007). https://doi.org/10.1111/j.1365-2621.2006.01210.x

    Article  CAS  Google Scholar 

  11. I. Alibas, A. Yilmaz, Microwave and convective drying kinetics and thermal properties of orange slices and effect of drying on some phytochemical parameters. J. Therm. Anal. Calorim. (2022). https://doi.org/10.1007/s10973-021-11108-3

    Article  PubMed  Google Scholar 

  12. M.P. Zia, I. Alibas, Influence of the drying methods on color, vitamin C, anthocyanin, phenolic compounds, antioxidant activity, and in vitro bioaccessibility of blueberry fruits. Food Biosci. 42, 101179 (2021). https://doi.org/10.1016/j.fbio.2021.101179

    Article  CAS  Google Scholar 

  13. J. Lee, R.W. Durst, R.E. Wrolstad, Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J. AOAC Int. 88(5), 1269–1278 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. D. Vitali, I.V. Dragojević, B. Šebečić, Effects of incorporation of integral raw materials and dietary fiber on the selected nutritional and functional properties of biscuits. J. Food Chem. 114, 1462–1469 (2009). https://doi.org/10.1016/j.foodchem.2008.11.032

    Article  CAS  Google Scholar 

  15. J. Bouayed, H. Deußer, L. Hoffmann, T. Bohn, Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. Their. Native Patterns. Food Chem. 131(4), 1466–1472 (2012)

    CAS  Google Scholar 

  16. R. Apak, K. Guclu, M. Ozyurek, S.E. Celik, Mechanism of antioxidant capacity assays and the CUPRAC (Cupric ion reducing antioxidant capacity) assay. Mikrochim. Acta 4, 413–419 (2008). https://doi.org/10.1007/s00604-007-0777-0

    Article  CAS  Google Scholar 

  17. W. Brand-Williams, M.E. Cuvelier, C.L.W.T. Berset, Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28(1), 25–30 (1995)

    Article  CAS  Google Scholar 

  18. M. Naczk, F. Shahidi, Extraction and analysis of phenolics in food. J. Chromatogr. A 1054(1–2), 95–111 (2004). https://doi.org/10.1016/j.chroma.2004.08.059

    Article  CAS  PubMed  Google Scholar 

  19. N.M. Anson, E. Selinheimo, R. Havenaar, A.M. Aura, I. Mattila, P. Lehtinen, G.R.M.M. Haenen, Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. J. Agric. Food Chem. 57(14), 6148–6155 (2009). https://doi.org/10.1021/jf900492h

    Article  CAS  PubMed  Google Scholar 

  20. M.P. Zia, I. Alibas, The effect of different drying techniques on color parameters, ascorbic acid content, anthocyanin and antioxidant capacities of cornelian cherry. Food Chem. 364, 130358 (2021). https://doi.org/10.1016/j.foodchem.2021.130358

    Article  CAS  Google Scholar 

  21. A. Priyadarshini, K. Rayaguru, A.K. Biswal, P.K. Panda, C. Lenka, P.K. Misra, Impact of conventional and ohmic blanching on color, phytochemical, structural, and sensory properties of mango (Mangifera indica L.) cubes: a comparative analysis. Food Chem. Adv. (2023). https://doi.org/10.1016/j.focha.2023.100308

    Article  Google Scholar 

  22. E. Morales-Sánchez, Ohmic heating blanching of Agaricus bisporus mushroom: effects on polyphenoloxidase inactivation kinetics, color, and texture. Innov. Food Sci. Emerg. Technol. 80, 103105 (2022). https://doi.org/10.1016/j.ifset.2022.103105

    Article  CAS  Google Scholar 

  23. H. Bozkir, A.R. Ergun, Effect of sonication and osmotic dehydration applications on the hot air drying kinetics and quality of persimmon. LWT Food Sci. Technol. 131, 109704 (2020). https://doi.org/10.1016/j.lwt.2020.109704

    Article  CAS  Google Scholar 

  24. C. Bas-Bellver, C. Andrés, L. Seguí, C. Barrera, N. Jiménez-Hernández, A. Artacho et al., Valorization of persimmon and blueberry byproducts to obtain functional powders: in vitro digestion and fermentation by gut microbiota. J. Agric. Food Chem. 68(30), 8080–8090 (2020). https://doi.org/10.1021/acs.jafc.0c02088

    Article  CAS  PubMed  Google Scholar 

  25. K. Ozkan, A. Karadag, O. Sagdic, The effects of different drying methods on the in vitro bioaccessibility of phenolics, antioxidant capacity, minerals and morphology of black ‘Isabel’ grape. LWT Food Sci. Technol. 158, 113185 (2022). https://doi.org/10.1016/j.lwt.2022.113185

    Article  CAS  Google Scholar 

  26. V. Lavelli, S. Hippeli, C. Peri, E.F. Elstner, Evaluation of radical scavenging activity of fresh and air-dried tomatoes by three model reactions. J. Agric. Food Chem. 47(9), 3826–3831 (1999). https://doi.org/10.1021/jf981372i

    Article  CAS  PubMed  Google Scholar 

  27. D. Dziki, Recent trends in pretreatment of food before freeze-drying. Processes 8(12), 1661 (2020). https://doi.org/10.3390/pr8121661

    Article  Google Scholar 

  28. M. González-Fésler, D. Salvatori, P. Gómez, S.M. Alzamora, Convective air drying of apples as affected by blanching and calcium impregnation. J. Food Eng. 87(3), 323–332 (2008)

    Article  Google Scholar 

  29. B. Ramírez-Pulido, C. Bas-Bellver, N. Betoret, C. Barrera, L. Segui, (2021) Valorization of vegetable fresh-processing residues as functional powdered ingredients. A review on the potential impact of pretreatments and drying methods on bioactive compounds and their bioaccessibility. Front. Sustain. Food Syst. 5, 654313 (2021). https://doi.org/10.3389/fsufs.2021.654313

    Article  Google Scholar 

  30. A.O. Adetoro, U.L. Opara, O.A. Fawole, Effect of blanching on enzyme inactivation, physicochemical attributes and antioxidant capacity of hot-air dried pomegranate (Punica granatum L.) arils (cv. wonderful). Processes 9(1), 25 (2020). https://doi.org/10.3390/pr9010025

    Article  CAS  Google Scholar 

  31. B. Bchir, S. Besbes, R. Karoui, H. Attia, M. Paquot, C. Blecker, Effect of air-drying conditions on physico-chemical properties of osmotically pre-treated pomegranate seeds. Food Bioproc. Tech. 5, 1840–1852 (2012). https://doi.org/10.1007/s11947-010-0469-3

    Article  CAS  Google Scholar 

  32. S. Kayacan, S. Karasu, P.K. Akman, H. Goktas, I. Doymaz, O. Sagdic, Effect of different drying methods on total bioactive compounds, phenolic profile, in vitro bioaccessibility of phenolic and HMF formation of persimmon. LWT Food Sci. Technol. 118, 108830 (2020). https://doi.org/10.1016/j.lwt.2019.108830

    Article  CAS  Google Scholar 

  33. R.R. Kotha, F.S. Tareq, E. Yildiz, D.L. Luthria, Oxidative stress and antioxidants-a critical review on in vitro antioxidant assays. Antioxidants 11(12), 2388 (2022). https://doi.org/10.3390/%20antiox11122388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. Stojanovic, J.L. Silva, Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, colour and chemical properties of rabbiteye blueberries. Food Chem. 101, 898–906 (2007). https://doi.org/10.1016/j.foodchem.2006.02.044

    Article  CAS  Google Scholar 

  35. Z. Zhang, Q. We, M. Nie, N. Jiang, C. Liu, C. Liu et al., Microstructure and bioaccessibility of different carotenoid species as affected by hot air drying: Study on carrot, sweet potato, yellow bell pepper and broccoli. LWT Food Sci. Technol. 96, 357–363 (2018). https://doi.org/10.1016/j.lwt.2018.05.061

    Article  CAS  Google Scholar 

  36. V.P. Gouw, J. Jung, Y. Zhao, Functional properties, bioactive compounds, and in vitro gastrointestinal digestion study of dried fruit pomace powders as functional food ingredients. LWT Food Sci. Technol. 80, 136–144 (2017). https://doi.org/10.1016/j.lwt.2017.02.015

    Article  CAS  Google Scholar 

  37. I. Alibas, M.P. Zia, A. Yilmaz, B.B. Asik, Drying kinetics and quality characteristics of green apple peel (Mallus communis L. var“Granny Smith”) used in herbal tea production. J. Food. Process Preserv. 44(2), 14332 (2020). https://doi.org/10.1111/jfpp.14332

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was carried out in Bursa Uludag University, Biosystems Engineering, Drying Laboratory (Bursa, Türkiye) under the leadership of Assoc. Prof. Dr. Ilknur Alibas, corresponding author.

Funding

The entire work was personally funded by authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilknur Alibas.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, E., Yilmaz, A., Gurbuz, O. et al. Effect of drying methods and pre-treatments on bioactive potential of persimmon (Diospyros kaki L.). Food Measure 18, 2014–2029 (2024). https://doi.org/10.1007/s11694-023-02252-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02252-5

Keywords

Navigation