Skip to main content
Log in

Effects of microwave drying on nutrient component and antioxidant activity of persimmon slices

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The impact of drying on the nutritional compositions of products is one of the crucial issues restricting the advance of food quality, but there has been a lack of systematic research on the variation characteristics of nutritional components of persimmon during microwave drying. The objective of this work was to investigate the effects of microwave power, slice thickness and loading amount on the content of vitamin C (VC), total sugar (TS), total acid (TA), soluble tannin (ST), total phenol (TP) and antioxidant activity (AA) of persimmon slices. The results demonstrated that with the rise of microwave power, the VC and TA of persimmon slices initially increased and then decreased, and reached the maximum at 280 W, which were 47.0 mg/100 g and 2.9 g/kg, respectively. However, the TS, ST, TP and AA improved substantially with the elevation of microwave power. As the slice thickness increased, VC firstly increased and then decreased, and peaked when the thickness was 2.0 cm, whereas the TS and TA decreased at first and then increased. The content of TS and TA was found to be the lowest at the thickness of 1.5 cm, which was only 36.3% and 2.8 g/kg, respectively. Otherwise, the ST, TP and AA of persimmon also decreased at first and then increased with the increase of thickness, the 2.0 cm treatment was noticeably lower than other treatments. When loading capacity enhanced, VC and TS initially increased and then decreased, and illustrated the highest content as the load was 1.9 kg/m2, while the TA exhibited the opposite trend and yielded the minimum as the load was 1.6 kg/m2. Furthermore, an increasing load led to the remarkable decline of the contents of ST, TP and AA. In conclusion, drying at the microwave power level of 280 W, the thickness of the slice of 2.0–3.0 cm and the loading capacity of 1.6–1.9 kg/m2 allowed better retention of VC, TS and TA. Besides, the higher contents of ST, TP and AA of the dried samples were observed at the microwave power level of 420 W, the thickness of the slice of 1.0–1.5 cm or 2.5–3.0 cm, and the loading capacity of 1.0 kg/m2. Above research results would provide theoretical reference for the development of the microwave drying process of persimmon slices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Liu, W. Zhu, C. Li, Sci. Technol. Food Ind. (China) (2016). https://doi.org/10.13386/j.issn1002-0306.2016.24.064

    Article  Google Scholar 

  2. S. Kayacan, S. Karasu, P.K. Akman, H. Goktas, I. Doymaz, O. Sagdic, LWT-Food Sci. Technol. (2019). https://doi.org/10.1016/j.lwt.2019.108830

    Article  Google Scholar 

  3. Z. Liang, X. Li, H. Ru, Y. Lü, Food Sci. (2018). https://doi.org/10.7506/spkx1002-6630-201803025

    Article  Google Scholar 

  4. Y. Jia, I. Khalifa, L. Hu, W. Zhu, J. Li, K. Li, C. Li, Food Bioprod. Process. (2019). https://doi.org/10.1016/j.fbp.2019.08.018

    Article  Google Scholar 

  5. X. Zhang, X. Chen, X. Li, T. Ren, Food Sci. Technol. (2019). https://doi.org/10.13684/j.cnki.spkj.2019.08.014

    Article  Google Scholar 

  6. O.V. Nistor, L.S. Ceclu, D.G. Andronoiu, L. Rudi, E. Botez, Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2017.04.129

    Article  PubMed  Google Scholar 

  7. R.L. Monteiro, J.V. Link, G. Tribuzi, B.A.M. Carciofi, J.B. Laurindo, LWT-Food Sci. Technol. (2018). https://doi.org/10.1016/j.lwt.2018.06.023

    Article  Google Scholar 

  8. K. An, D. Zhao, Z. Wang, J. Wu, Y. Xu, G. Xiao, Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2015.11.033

    Article  PubMed  Google Scholar 

  9. J. Shen, T. Wei, X. Ji, M. Wang, Food Sci. (2017). https://doi.org/10.7506/spkx1002-6630-201707012

    Article  Google Scholar 

  10. X. Chen, B. Liu, Q. Chen, Y. Liu, X. Duan, LWT-Food Sci. Technol. (2020). https://doi.org/10.1016/j.lwt.2020.110205

    Article  Google Scholar 

  11. P. Liu, G. Ren, X. Duan, L. Jin, Y. Zhang, L. Ma, Food Mach. (2020). https://doi.org/10.13652/j.issn.1003-5788.2020.12.039

    Article  Google Scholar 

  12. L. Zhang, Y. Xue, J. Deng, C. Liu, L. Yu, H. Ru, M. Dong, Z. Yu, Mod. Food Sci. Technol. (2015). https://doi.org/10.13982/j.mfst.1673-9078.2015.8.036

    Article  Google Scholar 

  13. D. Keser, G. Guclu, H. Kelebek, M. Keskin, Y. Soysal, Y.E. Sekerli, A. Arslan, S. Selli, Food Bioprod. Process. (2019). https://doi.org/10.1016/j.fbp.2019.11.016

    Article  Google Scholar 

  14. S. Song, M. Wang, Food Ferme Ind. (2020). https://doi.org/10.13995/j.cnki.11-1802/ts.021979

    Article  Google Scholar 

  15. S. Çelen, Foods (2019). https://doi.org/10.3390/foods8020084

  16. L. Yao, L. Fan, Z. Duan, LWT-Food Sci. Technol. (2019). https://doi.org/10.1016/j.lwt.2019.108981

    Article  Google Scholar 

  17. H. Li, J. Jiang, L. Chen, X. Chen, X. Li, Food Sci Technol. (2019). https://doi.org/10.13684/j.cnki.spkj.2019.07.015

    Article  Google Scholar 

  18. T. Ding, Z. Ge, J. Shi, Y.T. Xu, C.L. Jones, D.H. Liu, LWT-Food Sci. Technol. (2015). https://doi.org/10.1016/j.lwt.2014.09.012

    Article  Google Scholar 

  19. M.A. Tessmer, R.A. Kluge, B. Appezato-da-Glória, Sci. Hortic. (2014). https://doi.org/10.1016/j.scienta.2014.04.023

    Article  Google Scholar 

  20. P. Udomkun, D. Argyropoulos, M. Nagle, B. Mahayothee, A.E. Oladeji, J. Müller, J. Food Meas. Charact. (2018). https://doi.org/10.1007/s11694-018-9718-3

    Article  Google Scholar 

  21. A. Mokrani, S. Krisa, S. Cluzet, G.D. Costa, H. Temsamani, E. Renouf, J.M. Mérillon, K. Madani, M. Mesnil, A. Monvoisin, T. Richard, Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2015.12.026

    Article  PubMed  Google Scholar 

  22. W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT-Food Sci. Technol. (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  23. V.R.D. Souza, P.A.P. Pereira, T.L.T.D. Silva, L.C.D.O. Lima, R. Pio, F. Queiroz, Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2014.01.125

    Article  PubMed  Google Scholar 

  24. I.F.F. Benzie, J.J. Strain, Anal. Biochem. (1996). https://doi.org/10.1006/abio.1996.0292

    Article  PubMed  Google Scholar 

  25. Q. Wei, Z. Zhang, D. Li, N. Jiang, B. Jin, C. Liu, Mod. Food Sci. Technol. (2016). https://doi.org/10.13982/j.mfst.1673-9078.2016.1.037

    Article  Google Scholar 

  26. E. Horuz, H. Bozkurt, H. Karatas, M. Maskan, Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2017.03.046

    Article  PubMed  Google Scholar 

  27. T. Guo, X. Bai, Y. Chen, Z. Duan, Z. Chen, W. Cai, C. Deng, Food Mach. (2019). https://doi.org/10.13652/j.issn.1003-5788.2019.10.024

    Article  Google Scholar 

  28. J.K. Yan, L.X. Wu, Z.R. Qiao, W.D. Cai, H. Ma, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2018.08.012

    Article  PubMed  Google Scholar 

  29. Q. Wang, C. Deng, Y. Ren, C. Pu, H. Wu, Food Sci. (2016). https://doi.org/10.7506/spkx1002-6630-201605012

    Article  Google Scholar 

  30. J. Chen, M. Zhou, J. Bi, X. Li, C. Guo, Q. Chen, G. Xin, Food Sci. (2019). https://doi.org/10.7506/spkx1002-6630-20181023-265

    Article  PubMed  Google Scholar 

  31. M.L. Castelló, A. Heredia, E. Domínguez, M.D. Ortolá, J. Tarrazó, Food Chem. (2011). https://doi.org/10.1016/j.foodchem.2011.03.023

    Article  PubMed  Google Scholar 

  32. M. Zielinska, D. Zielinska, LWT-Food Sci. Technol. (2019). https://doi.org/10.1016/j.lwt.2019.01.041

    Article  Google Scholar 

  33. M. Zielinska, D. Zielinska, M. Markowski, Food Bioprocess. Technol. (2018). https://doi.org/10.1007/s11947-017-2034-9

    Article  Google Scholar 

  34. J. Wen, J. Dai, L. Zhang, Food Ferme Ind. (2019). https://doi.org/10.13995/j.cnki.11-1802/ts.017842

    Article  Google Scholar 

  35. Y. Lin, D. Zhou, R. Wu, H. Liang, R. Lai, J. Chen, X. Ye, Food Res. Dev. (2021). https://doi.org/10.12161/j.issn.1005-6521.2021.07.015

    Article  Google Scholar 

  36. C.H. Chong, A. Figiel, C.L. Law, A. Wojdyło, Food Bioprocess Technol. (2014). https://doi.org/10.1007/s11947-013-1123-7

    Article  Google Scholar 

  37. H. Wang, M. Zhang, Z. Wang, Y. Song, C. Ma, L. Yang, B. Zhang, M. Wu, Food Sci Technol. (2019). https://doi.org/10.13684/j.cnki.spkj.2019.06.019

    Article  Google Scholar 

  38. X.F. Shi, J.Z. Chu, Y.F. Zhang, C.Q. Liu, X.Q. Yao, Ind. Crop. Prod. (2017). https://doi.org/10.1016/j.indcrop.2017.04.021

    Article  Google Scholar 

  39. W. Routray, V. Orsat, Y. Gariepy, Dry. Technol. (2014). https://doi.org/10.1080/07373937.2014.919002

    Article  Google Scholar 

  40. X. Gou, D. Liu, X. Yang, Y. Guo, Food Sci. (2018). https://doi.org/10.7506/spkx1002-6630-201821013

    Article  Google Scholar 

  41. Q. Gao, J. Chen, J. Zhang, C. Liu, C. Liu, Y. Xue, Sci. Technol. Food Ind. (China) (2018). https://doi.org/10.13386/j.issn1002-0306.2018.16.002

    Article  Google Scholar 

  42. X. Liu, X. Zeng, Y. Zhang, R. Luo, R. Gao, W. Zhao, J. Nucl. Agric. Sci. (2020). https://doi.org/10.11869/j.issn.100-8551.2020.11.2470

    Article  Google Scholar 

  43. S.N. Lou, Y.C. Lai, J.D. Huang, C.T. Ho, L.H.A. Ferng, Y.C. Chang, Food Chem. (2015). https://doi.org/10.1016/j.foodchem.2014.08.119

    Article  PubMed  Google Scholar 

  44. X. Guo, L. Zhou, J. Bi, J. Yi, X. Wu, X. Chen, J. Chin. Inst. Food Sci. Technol. (2017). https://doi.org/10.16429/j.1009-7848.2017.08.008

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (32160581) and Guangxi Natural Science Foundation (2020GXNSFAA259012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Duan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Duan, Z., Tang, X. et al. Effects of microwave drying on nutrient component and antioxidant activity of persimmon slices. Food Measure 16, 1744–1753 (2022). https://doi.org/10.1007/s11694-021-01273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01273-2

Keywords

Navigation