Skip to main content
Log in

Effect of various food processing techniques on the retention of loquat phenolics and their antioxidant capacity during in vitro digestion

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Loquat (Eriobotrya japonica Lindl.) is a perishable fruit with a huge potential for processing. In this study, the effects of food processing techniques and in vitro gastrointestinal digestion on the phenolics of loquat products were investigated. For this purpose, the results of processed loquat products including juice, nectar, leather, pulp, and jam were compared to the control loquat samples. Spectrophotometric and chromatographic methods were used to analyze the total phenolic (TPC) and total flavonoid contents (TFC), individual phenolic compounds (chlorogenic acid, p-coumaric acid, epicatechin) as well as total antioxidant capacity by DPPH and CUPRAC assays. The TPC and TFC of loquat products varied from 61.2±5.4 to 855.7±36.0 mg GAE/100 g and 37.2±1.6 to 979.5±65.3 mg CE/100 g, respectively. As in total phenolics, flavonoids, and antioxidants, the highest chlorogenic acid, p-coumaric acid, and epicatechin contents were obtained in loquat leather as 201.20±9.99 mg/100 g, 47.50±2.21 mg/100 g, and 46.87±0.28 mg/100 g, respectively. In addition to these, after in vitro gastrointestinal digestion, it was revealed that loquat leather had the highest TPC, TFC, and total antioxidant capacity values compared to other samples. Results have indicated that the phenolic content of fresh loquat fruits could be improved or protected, mainly by processing into leather and/or jam. Thus, the product scale for this fruit can be increased by obtaining foods with high nutritional value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Research data will be shared upon request.

References

  1. S. Alfaro, A. Mutis, A. Quiroz, I. Seguel, E. Scheuermann, Effects of drying techniques on murtilla fruit polyphenols and antioxidant activity. J. Food Res. 3(5), 73 (2014). https://doi.org/10.5539/jfr.v3n5p73

    Article  Google Scholar 

  2. M. Alminger, A.M. Aura, T. Bohn, C. Dufour, S.N. El, A. Gomes, S. Karakaya, M.C. Martínez-Cuesta, G.J. Mcdougall, T. Requena, C.N. Santos, In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr. Rev. Food Sci. Food Saf. 13(4), 413–436 (2014). https://doi.org/10.1111/1541-4337.12081

  3. R. Apak, K. Güçlü, M. Özyürek, S.E. Karademir, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 52(26), 7970–7981 (2004). https://doi.org/10.1021/jf048741x

    Article  CAS  PubMed  Google Scholar 

  4. R. Apak, M. Özyürek, K. Güçlü, E. Çapanoğlu, Antioxidant activity/capacity measurement. 1. classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 64(5), 997–1027 (2016). https://doi.org/10.1021/acs.jafc.5b04739

    Article  CAS  PubMed  Google Scholar 

  5. F.J. Barba, C. Cortés, M.J. Esteve, A. Frígola, Study of antioxidant capacity and quality parameters in an orange juice–milk beverage after high-pressure processing treatment. Food Bioprocess Technol. 5(6), 2222–2232 (2012). https://doi.org/10.1007/s11947-011-0570-2

    Article  CAS  Google Scholar 

  6. M.J. Bermudez-Soto, F.A. Tomas-Barberan, M.T. Garcia-Conesa, Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem. 102(3), 865–874 (2007). https://doi.org/10.1016/j.foodchem.2006.06.025

    Article  CAS  Google Scholar 

  7. J. Bouayed, H. Deußer, L. Hoffmann, T. Bohn, Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem. 131(4), 1466–1472 (2012). https://doi.org/10.1016/j.foodchem.2011.10.030

    Article  CAS  Google Scholar 

  8. J. Cai, T. Chen, Z. Zhang, B. Li, G. Qin, S. Tian, Metabolic dynamics during loquat fruit ripening and postharvest technologies. Front. Plant Sci. 10, 619 (2019). https://doi.org/10.3389/fpls.2019.00619

    Article  PubMed  PubMed Central  Google Scholar 

  9. X. Cao, Y. Zhang, F. Zhang, Y. Wang, J. Yi, X. Liao, Effects of high hydrostatic pressure on enzymes, phenolic compounds, anthocyanins, polymeric color and color of strawberry pulps. J. Sci. Food. Agric. 91(5), 877–885 (2011). https://doi.org/10.1002/jsfa.4260

    Article  CAS  PubMed  Google Scholar 

  10. E. Capanoglu, J. Beekwilder, D. Boyacioglu, R. Hall, De R. Vos, Changes in antioxidant and metabolite profiles during production of tomato paste. J. Agric. Food Chem. 56(3), 964–973 (2008). https://doi.org/10.1021/jf072990e

    Article  CAS  PubMed  Google Scholar 

  11. Y. Chen, A. Martynenko, Combination of hydrothermodynamic (HTD) processing and different drying methods for natural blueberry leather. LWT-Food Sci. Technol. 87, 470–477 (2018). https://doi.org/10.1016/j.lwt.2017.09.030

    Article  CAS  Google Scholar 

  12. B.P. Costa, M. Ikeda, de A.M. Melo, F.E.S.B. Alves, D. Carpine, R.H. Ribani, Eriobotrya japonica fruits and its by-products: a promising fruit with bioactive profile and trends in the food application–A bibliometric review. Food Biosci. 50, 102099 (2022). https://doi.org/10.1016/j.fbio.2022.102099

    Article  CAS  Google Scholar 

  13. P.N. Curi, P.V. Nogueira, de A.B. Almeida, C.S. Carvalho, R. Pio, M. Pasqual, De V.R. Souza, Processing potential of jellies from subtropical loquat cultivars. Food Sci. Technol. (Brazil). 37(1), 70–75 (2017). https://doi.org/10.1590/1678-457X.07216

    Article  Google Scholar 

  14. Del R. Pino-García, M.L. González-SanJosé, M.D. Rivero-Pérez, J. García-Lomillo, P. Muñiz, Total antioxidant capacity of new natural powdered seasonings after gastrointestinal and colonic digestion. Food Chem. 211, 707–714 (2016). https://doi.org/10.1016/j.foodchem.2016.05.127

    Article  CAS  PubMed  Google Scholar 

  15. I. Desseva, D. Mihaylova, Influence of in vitro gastrointestinal digestion on phytochemicals in pomegranate juice. Food Sci. Technol. 40, 211–216 (2020). https://doi.org/10.1590/fst.07219

    Article  Google Scholar 

  16. I. Desseva, M. Stoyanova, N. Petkova, D. Mihaylova, Red beetroot juice phytochemicals bioaccessibility: an in vitro approach. Pol. J. Food Nutr. Sci. 70(1), 45–53 (2020). https://doi.org/10.31883/pjfns/116590

    Article  CAS  Google Scholar 

  17. V. Dewanto, X. Wu, K.K. Adom, R.H. Liu, Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50(10), 3010–3014 (2002). https://doi.org/10.1021/jf0115589

    Article  CAS  PubMed  Google Scholar 

  18. A. Dhiman, R. Suhag, D. Thakur, V. Gupta, P.K. Prabhakar, Current status of loquat (Eriobotrya Japonica Lindl.): bioactive functions, preservation approaches, and processed products. Food Rev. Int. 38, 286–316 (2022). https://doi.org/10.1080/87559129.2020.1866007

    Article  Google Scholar 

  19. C.-K. Ding, K. Chachin, Y. Ueda, Y. Imahori, C.Y. Wang, Metabolism of phenolic compounds during loquat fruit development. J. Agric. Food Chem. 49(6), 2883–2888 (2001). https://doi.org/10.1021/jf0101253

    Article  CAS  PubMed  Google Scholar 

  20. S. Ercisli, S. Gozlekci, M. Sengul, A. Hegedus, S. Tepe, Some physicochemical characteristics, bioactive content and antioxidant capacity of loquat (Eriobotrya japonica (Thunb.) Lindl.) fruits from Turkey. Sci. Hort. 148, 185–189 (2012). https://doi.org/10.1016/j.scienta.2012.10.001

    Article  CAS  Google Scholar 

  21. M.F. Erkölencik, Determination of bioactive and aromatic properties of different loquat varieties. Master thesis, Namik Kemal University, Tekirdag, Turkey (2016).

  22. A. Gil-Izquierdo, M.I. Gil, F. Ferreres, F.A. Tomás-Barberán, In vitro availability of flavonoids and other phenolics in orange juice. J. Agric. Food Chem. 49(2), 1035–1041 (2001). https://doi.org/10.1021/jf0000528

  23. V. Goulas, I.S. Minas, P.M. Kourdoulas, A.R. Vicente, G.A. Manganaris, Phytochemical content, antioxidants and cell wall metabolism of two loquat (Eriobotrya japonica) cultivars under different storage regimes. Food Chem. 155, 227–234 (2014). https://doi.org/10.1016/j.foodchem.2014.01.054

    Article  CAS  PubMed  Google Scholar 

  24. B. Guldiken, G. Toydemir, K.N. Memis, S. Okur, D. Boyacioglu, E. Capanoglu, Home-processed red beetroot (Beta vulgaris L.) products: changes in antioxidant properties and bioaccessibility. Int. J. Mol. Sci. 17(6), 858 (2016). https://doi.org/10.3390/ijms17060858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Z. Haida, M. Hakiman, A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci. Nutr. 7(5), 1555–1563 (2019). https://doi.org/10.1002/fsn3.1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. He, J. Zeng, L. Zhai, Y. Liu, H. Wu, R. Zhang, Z. Li, E. Xia, Effect of in vitro simulated gastrointestinal digestion on polyphenol and polysaccharide content and their biological activities among 22 fruit juices. Food Res. Int. 102, 156–162 (2017). https://doi.org/10.1016/j.foodres.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  27. A. Helal, D. Tagliazucchi, E. Verzelloni, A. Conte, Bioaccessibility of polyphenols and cinnamaldehyde in cinnamon beverages subjected to in vitro gastro-pancreatic digestion. J. Funct. Foods 7(1), 506–516 (2014). https://doi.org/10.1016/j.jff.2014.01.005

    Article  CAS  Google Scholar 

  28. W. Huang, X. Bi, X. Zhang, X. Liao, X. Hu, J. Wu, Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time. Innov. Food Sci. Emerg. Technol. 18, 74–82 (2013). https://doi.org/10.1016/j.ifset.2013.01.001

    Article  CAS  Google Scholar 

  29. A. Ibarz, A. Garvin, J. Costa, Rheological behavior of loquat (Eriobotrya japonica) juices. J. Texture Stud. 27, 175–184 (1996). https://doi.org/10.1177/016555158501100107

    Article  Google Scholar 

  30. M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie, … A. Brodkorb, A standardised static in vitro digestion method suitable for food – an international consensus. Food Funct. 5(6), 1113–1124 (2014). https://doi.org/10.1039/C3FO60702J

  31. S. Kamiloglu, M. Demirci, S. Selen, G. Toydemir, D. Boyacioglu, E. Capanoglu, Home processing of tomatoes (Solanum lycopersicum): effects on in vitro bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity. J. Sci. Food. Agric. 94(11), 2225–2233 (2014). https://doi.org/10.1002/jsfa.6546

    Article  CAS  PubMed  Google Scholar 

  32. D.O. Kim, S.W. Jeong, C.Y. Lee, Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81(3), 321–326 (2003). https://doi.org/10.1016/S0308-8146(02)00423-5

    Article  CAS  Google Scholar 

  33. X. Li, C. Xu, K. Chen, Nutritional and composition of fruit cultivars. In V. R. Preedy, M.S.J. Simmonds (Eds.), Nutritional Composition of Fruit Cultivars (Academic Press, London, 2016), pp. 371–394. https://doi.org/10.1016/B978-0-12-408117-8.00016-7

  34. D.B. López-Lluch, M. Cano-Lamadrid, F. Hernández, A. Zimmer, K. Lech, A. Figiel, Ã.A. Carbonell-Barrachina, A. Wojdyło, Hydroxycinnamic acids and carotenoids of dried loquat fruit cv. ‘Algar’ affected by freeze-, convective-, vacuum-microwave- and combined-drying methods. Molecules 25(16), 3643 (2020). https://doi.org/10.3390/molecules25163643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R. Martínez-Las Heras, A. Pinazo, A. Heredia, A. Andrés, Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chem. 214, 478–485 (2017). https://doi.org/10.1016/j.foodchem.2016.07.104

    Article  CAS  PubMed  Google Scholar 

  36. G.J. McDougall, P. Dobson, P. Smith, A. Blake, D. Stewart, Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J. Agric. Food Chem. 53(15), 5896–5904 (2005). https://doi.org/10.1021/jf050131p

    Article  CAS  PubMed  Google Scholar 

  37. D. Mihaylova, I. Desseva, M. Stoyanova, N. Petkova, M. Terzyiska, A. Lante, Impact of in vitro gastrointestinal digestion on the bioaccessibility of phytochemical compounds from eight fruit juices. Molecules 26(4), 1187 (2021). https://doi.org/10.3390/molecules26041187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A. Mishra, A. Upadhyay, P. Jaiswal, N. Sharma, Effect of different drying method on the chemical and microstructural properties of Loquat slices. J. Food Process. Preserv. 45, e15105 (2021). https://doi.org/10.1111/jfpp.15105

    Article  CAS  Google Scholar 

  39. P. Molyneux, The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 26(2), 211–219 (2004). https://doi.org/10.1287/isre.6.2.144

  40. N. Ortega, A. Macià, M.-P. Romero, J. Reguant, M.-J. Motilva, Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chem. 124(1), 65–71 (2011). https://doi.org/10.1016/j.foodchem.2010.05.105

    Article  CAS  Google Scholar 

  41. A.T. Öz, E. Kafkas, A. Bozdoğan, Combined effects of oxalic acid treatment and modified atmosphere packaging on postharvest quality of loquats during storage. Turkish J. Agric. Forestry 40(3), 433–440 (2016). https://doi.org/10.3906/tar-1509-12

    Article  CAS  Google Scholar 

  42. M.J. Rodríguez-Roque, M.A. Rojas-Graü, P. Elez-Martínez, O. Martín-Belloso, In vitro bioaccessibility of health-related compounds as affected by the formulation of fruit juice-and milk-based beverages. Food Res. Int. 62, 771–778 (2014). https://doi.org/10.1016/j.foodres.2014.04.037

    Article  CAS  Google Scholar 

  43. M.J. Rodríguez-Roque, de B. Ancos, C. Sánchez-Moreno, M.P. Cano, P. Elez-Martínez, O. Martín-Belloso, Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. J. Funct. Foods. 14, 33–43 (2015). https://doi.org/10.1016/j.jff.2015.01.020

    Article  CAS  Google Scholar 

  44. N.A. Sagar, S. Pareek, R. Bhardwaj, N. Vyas, Bioactive compounds of loquat (Eriobotrya japonica (Thunb.) L.). In H.N. Murthy, V.A. Bapat (Eds.), Bioactive compounds in underutilized fruits and nuts (Springer, New York, 2020), pp. 1–21. https://doi.org/10.1007/978-3-030-06120-3_10-1

  45. K.L. Santos, P.H. Machado de Sousa, R.M. Cavalcanti-Mata, M.E., B. De Vasconcelos, L, Mixed leather of açaí, banana, peanut, and guarana syrup: the effect of agar and gellan gum use on quality attributes. Int. J. Gastronomy Food Sci. 26, 100407 (2021). https://doi.org/10.1016/j.ijgfs.2021.100407

    Article  Google Scholar 

  46. H.M.S. Shah, A.S. Khan, Z. Singh, S. Ayyub, Postharvest biology and technology of loquat (Eriobotrya japonica Lindl.). Foods 12, 1329 (2023). https://doi.org/10.3390/foods12061329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16(3), 144–158 (1965).

    Article  CAS  Google Scholar 

  48. S. Suna, A. Özkan-Karabacak, Investigation of drying kinetics and physicochemical properties of mulberry leather (pestil) dried with different methods. J. Food Process. Preserv. 43(8), 1–9 (2019). https://doi.org/10.1111/jfpp.14051

    Article  CAS  Google Scholar 

  49. H. Takahashi, H. Sunitani, Y. Inada, D. Mori, Y. Nakano, Potent aroma volatiles in fresh loquat and its canned product. Nippon Shokuhin Kagaku Kogaku Kaisji 47(4), 302–310 (2000). https://doi.org/10.3136/nskkk.47.302

    Article  CAS  Google Scholar 

  50. I. Tontul, A. Topuz, Effects of different drying methods on the physicochemical properties of pomegranate leather (pestil). LWT-Food Sci. Technol. 80, 294–303 (2017). https://doi.org/10.1016/j.lwt.2017.02.035

    Article  CAS  Google Scholar 

  51. A. Topuz, Determination of some physical, chemical properties of loquat cultivars (Eriobotrya japonica L.) and possibilities of their being processed into marmalade, nectar and canned fruit. Master Thesis. Akdeniz University. Antalya, Turkey (1998).

  52. TurkPatent, Alanya loquat (2018), https://ci.turkpatent.gov.tr/cografi-isaretler/detay/38373 Accessed 16 November 2022.

  53. P.C. Wootton-Beard, L. Ryan, A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. J. Funct. Foods 3(4), 329–334 (2011). https://doi.org/10.1016/j.jff.2011.05.007

    Article  CAS  Google Scholar 

  54. H. Xu, J. Chen, Commercial quality, major bioactive compound content and antioxidant capacity of 12 cultivars of loquat (Eriobotrya japonica Lindl.) Fruits. J. Sci. Food. Agric. 91(6), 1057–1063 (2011). https://doi.org/10.1002/jsfa.4282

    Article  CAS  PubMed  Google Scholar 

  55. W. Zhang, X. Zhao, C. Sun, X. Li, K. Chen, Phenolic composition from different loquat (Eriobotrya japonica Lindl.) cultivars grown in China and their antioxidant properties. Molecules 20(1), 542–555 (2015). https://doi.org/10.3390/molecules20010542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manolya Eser Oner or Esra Capanoglu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11694_2023_2179_MOESM1_ESM.docx

Supplementary Fig. 1: HPLC chromatograms at 280 nm for (a) control (fresh), (b) juice, (c) nectar, (d) leather, (e) pulp and (f) jam samples before digestion (1: chlorogenic acid; 2: p-coumaric acid; 3: epicatechin). Fig. 2: HPLC chromatograms at 280 nm for (a) control (fresh), (b) juice, (c) nectar, (d) leather, (e) pulp and (f) jam samples after gastric digestion (1: chlorogenic acid; 2: p-coumaric acid; 3: epicatechin). Fig. 3: HPLC chromatograms at 280 nm for (a) control (fresh), (b) juice, (c) nectar, (d) leather, (e) pulp and (f) jam samples after intestinal digestion (1: chlorogenic acid; 2: p-coumaric acid; 3: epicatechin)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkan, G., Oner, M.E., Tas, D. et al. Effect of various food processing techniques on the retention of loquat phenolics and their antioxidant capacity during in vitro digestion. Food Measure 18, 428–436 (2024). https://doi.org/10.1007/s11694-023-02179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02179-x

Keywords

Navigation