Skip to main content
Log in

Optimization of enzyme-assisted lycopene extraction from tomato (Lycopersicon esculentum) peel using rice bran oil

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The lycopene pigment found abundantly in tomato peels has been proven to own antioxidant capacity and reduce risks of getting cancers. The present study aimed to investigate effects of enzymatic pretreatment to assist lycopene extraction from tomato peels using rice bran oil (RBO) as a green solvent. The peels were pretreated using Viscozyme L at different concentrations (0.5–2.5%), different incubation temperatures (30–70 °C), and incubation durations (30–150 min). The enzyme-assisted extraction conditions for lycopene from tomato peels were optimized using response surface methodology (RSM) based on Box–Behnken design with three levels of design factors (− 1, 0, and + 1). Pretreated peels were then extracted for 30 min at 25 °C using rice bran oil at a solid/oil ratio of 1:20 (w/v). Lycopene concentration were concurrently analyzed using Ultra Performance Liquid Chromatography system. The optimal extraction condition was 1.4% Viscozyme L incubated at 52 °C for 92 min resulted in a rice bran oil sample containing the highest concentration of lycopene (0.75 mg lycopene/100 ml rice bran oil or 399.6 mg lycopene/100 g dried tomato peels). Lycopene extraction using RBO along with Viscozyme L assistance could be a friendly extraction method to utilize the tomato-processing waste. RMS has been an effective tool for determining the optimal lycopene extraction conditions required to achieve a lycopene-containing oil product with both health and economic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. M.T. Melfi, D. Nardiello, N. Cicco, V. Candido, D. Centonze, Simultaneous determination of water-and fat-soluble vitamins, lycopene and beta-carotene in tomato samples and pharmaceutical formulations: double injection single run by reverse-phase liquid chromatography with UV detection. J. Food Compos. Anal. 70, 9–17 (2018)

    Article  CAS  Google Scholar 

  2. U.M. Sainju, R. Dris, B. Singh, Mineral nutrition of tomato. Food Agric. Environ. 1(2), 176–183 (2003)

    CAS  Google Scholar 

  3. B. Salehi, R. Sharifi-Rad, F. Sharopov, J. Namiesnik, A. Roointan, M. Kamle, P. Kumar, N. Martins, J. Sharifi-Rad, Beneficial effects and potential risks of tomato consumption for human health: an overview. Nutrition 62, 201–208 (2019)

    Article  PubMed  Google Scholar 

  4. R.C. Ranveer, S.N. Patil, A.K. Sahoo, Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food Bioprod. Process. 91(4), 370–375 (2013)

    Article  CAS  Google Scholar 

  5. J. Shi, M. Le Maguer. Degradation of lycopene in tomato processing. Paper presented at the VII International Symposium on the Processing Tomato 542. (2000)

  6. M.M. Poojary, P. Passamonti, Extraction of lycopene from tomato processing waste: kinetics and modelling. Food Chem. 173, 943–950 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. S. Machmudah, S. Winardi, M. Sasaki, M. Goto, N. Kusumoto, K. Hayakawa, Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J. Food Eng. 108(2), 290–296 (2012)

    Article  CAS  Google Scholar 

  8. E.H. Papaioannou, A.J. Karabelas, Lycopene recovery from tomato peel under mild conditions assisted by enzymatic pre-treatment and non-ionic surfactants. Acta Biochim. Pol. 59(1), 71–74 (2012)

    Article  CAS  Google Scholar 

  9. T. Baysal, S. Ersus, D. Starmans, Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste. J. Agric. Food Chem. 48(11), 5507–5511 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. M.J. Periago, F. Rincon, M.D. Agüera, G. Ros, Mixture approach for optimizing lycopene extraction from tomato and tomato products. J. Agric. Food Chem. 52(19), 5796–5802 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. R. Ciriminna, A. Fidalgo, F. Meneguzzo, L.M. Ilharco, M. Pagliaro, Lycopene: emerging production methods and applications of a valued carotenoid. ACS Sustain. Chem. Eng. 4(3), 643–650 (2016)

    Article  CAS  Google Scholar 

  12. R. Lavecchia, A. Zuorro, Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. Eur. Food Res. Technol. 228(1), 153–158 (2008)

    Article  CAS  Google Scholar 

  13. G.W. Cheng, D.J. Huber, Alterations in structural polysaccharides during liquefaction of tomato locule tissue. Plant Physiol. 111(2), 447–457 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. N.T. Huynh, G. Smagghe, G.B. Gonzales, J. Van Camp, K. Raes, Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves. J. Agric. Food Chem. 62(30), 7468–7476 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. N. Ratnasari, M. Walters, A. Tsopmo, Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes. Heliyon 3(7), e00351 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  16. M. Kehili, S. Sayadi, F. Frikha, A. Zammel, N. Allouche, Optimization of lycopene extraction from tomato peels industrial by-product using maceration in refined olive oil. Food Bioprod. Process. 117, 321–328 (2019)

    Article  CAS  Google Scholar 

  17. M.H. Zuknik, N.N. Norulaini, A.M. Omar, Supercritical carbon dioxide extraction of lycopene: a review. J. Food Eng. 112(4), 253–262 (2012)

    Article  CAS  Google Scholar 

  18. A. Ali, S. Devarajan, Nutritional and health benefits of Rice bran oil, in Brown rice. ed. by A. Manickavasagan, C. Santhakumar, N. Venkatachalapathy (Springer, Cham, 2017), pp.135–158

    Chapter  Google Scholar 

  19. X. Guan, H. Yao, Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chem. 106(1), 345–351 (2008)

    Article  CAS  Google Scholar 

  20. U.S.D.A. Tomatoes, Shipping point and market inspection instructionsUnited States (Department of Agriculture, Washington, 2005)

    Google Scholar 

  21. H. Kelebek, S. Selli, P. Kadiroğlu, O. Kola, S. Kesen, B. Uçar, B. Çetiner, Bioactive compounds and antioxidant potential in tomato pastes as affected by hot and cold break process. Food Chem. 220, 31–41 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. S.M. Choudhari, L. Ananthanarayan, Enzyme aided extraction of lycopene from tomato tissues. Food Chem. 102(1), 77–81 (2007)

    Article  CAS  Google Scholar 

  23. T. Sathish, D. Udayakiran, K. Himabindu, P.L.D. Sridevi, D. Kezia, P. Bhojaraju, HPLC method for the determination of lycopene in crude oleoresin extracts. Asian J. Chem. 21(1), 139 (2009)

    CAS  Google Scholar 

  24. T.M.T. Nguyen, M.T. Nguyen, Effect of enzymatic treatments on lycopene in vitro bioaccessibility in high pressure homogenized tomato puree and chromoplast fraction. Can Tho Univ. J. Sci. 01, 61–68 (2015)

    Article  Google Scholar 

  25. I. Çinar, Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids. Process Biochem. 40(2), 945–949 (2005)

    Article  Google Scholar 

  26. V.P. Nam, Improvement of lycopene extraction from tomatoes by enzyme–assisted treatment. Vietnam J. Sci. Technol. 54(4A), 275–275 (2016)

    Article  Google Scholar 

  27. M.R. Ladole, A.B. Muley, I.D. Patil, M. Talib, V.R. Parate, Immobilization of tropizyme-P on amino-functionalized magnetic nanoparticles for fruit juice clarification. J. Biochem. Technol. 5(4), 838–845 (2015)

    Google Scholar 

  28. A. Sahoo, P.S. Badhe, R. Adivarekar, M.R. Ladole, A.B. Pandit, Synthesis of glycinamides using protease immobilized magnetic nanoparticles. Biotechnol. Rep. 12, 13–25 (2016)

    Article  Google Scholar 

  29. J. Chen, J. Shi, S.J. Xue, Y. Ma, Comparison of lycopene stability in water-and oil-based food model systems under thermal-and light-irradiation treatments. LWT Food Sci. Technol. 42(3), 740–747 (2009)

    Article  CAS  Google Scholar 

  30. A. Zuorro, M. Fidaleo, R. Lavecchia, Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme Microb. Technol. 49(6–7), 567–573 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. R.K. Saini, A.E.-D.A. Bekhit, S. Roohinejad, K.R. Rengasamy, Y.-S. Keum, Chemical stability of lycopene in processed products: a review of the effects of processing methods and modern preservation strategies. J. Agric. Food Chem. 68(3), 712–726 (2019)

    Article  Google Scholar 

  32. C. Caris-Veyrat, A. Schmid, M. Carail, V. Böhm, Cleavage products of lycopene produced by in vitro oxidations: characterization and mechanisms of formation. J. Agric. Food Chem. 51(25), 7318–7325 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. S. Das, S. Mishra, Box–Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach. J. Environ. Chem. Eng. 5(1), 588–600 (2017)

    Article  CAS  Google Scholar 

  34. R.K. Agarwal, S.J.D. Bosco, Optimization of viscozyme L assisted extraction of coconut milk and virgin coconut oil. Asian J. Dairy Food Res. 33(4), 276–284 (2014)

    Article  Google Scholar 

  35. E.A. Abd El-Salam, N.F. Morsy, Optimization of the extraction of polyphenols and antioxidant activity from Malva parviflora L. leaves using Box-Behnken design. Prep. Biochem. Biotechnol. 49(9), 876–883 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. G. Chen, Z. Djuric, Carotenoids are degraded by free radicals but do not affect lipid peroxidation in unilamellar liposomes under different oxygen tensions. FEBS Lett. 505(1), 151–154 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is funded by International University, VNU-HCM under grant number T2020-06-BT

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha V. H. Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, Q.T.N., Nguyen, H.V.H. Optimization of enzyme-assisted lycopene extraction from tomato (Lycopersicon esculentum) peel using rice bran oil. Food Measure 17, 5154–5162 (2023). https://doi.org/10.1007/s11694-023-02029-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02029-w

Keywords

Navigation